Journal of Oral Implantology April 2014 - (Page 195)

CASE REPORT The Custom Endosteal Implant: Histology and Case Report of a Retrieved Maxillary Custom OsseousIntegrated Implant Nine Years in Service William D. Nordquist, BS, DMD, MS1* David J. Krutchkoff, DMD, MS2 The Custom Endosteal Implant (CEI) is a custom-cast osseo-integrated implant that has evolved to replace the ''old'' fibro-integrated subperiosteal variant. This newly developed implant achieves osseous integration by utilizing a hydroxyapatite (HA) coating, and a specialized grafting technique that produces much improved success rates relative to its fibro-integrated subperiosteal predecessor. This case reported here represents a maxillary CEI implant that was placed and in functional service for 9 years before being retrieved and processed for histologic examination subsequent to the patient's demise. In addition, due to infection that occurred shortly after placement, an early provisional procedure with fluoridated HA was also performed. Histologic analysis of the postmortem specimen revealed a fully integrated new bone formation intimately surrounding the previously dehisced implant strut. The latter had previously been decontaminated and grafted with a thin layer of fluorapatite (FA) material. Results including histologic analysis confirmed complete osseo-integration of the implant following successful FA graft revision. Key Words: Custom Endosteal Implant, subperiosteal implant, osseous integration, fluoridated HA, revision surgery, dental implant INTRODUCTION T he Custom Endosteal Implant (CEI) is a custom cast, osseo-integrated implant that has been developed to replace the now obsolete fibro-integrated subperiosteal device. This implant achieves osseous integration by utilizing a hydroxyapatite (HA) coating, and a specialized grafting technique that produces much improved success rates relative to its fibro-integrated counterpart. The purpose of this article was to document histologic features of a clinically placed CEI implant and surrounding tissues after 9 years of functional service. Specifically, we endeavored to demonstrate unequivocally that the 1 Private practice, Implant Dentistry, San Diego, Calif. Oral Pathology, University of Connecticut School of Dental Medicine, Farmington, Conn. * Corresponding author e-mail: wnordquist@yahoo.com DOI: 10.1563/AAID-JOI-D-11-00218 2 union of the HA-coated, FA-grafted implant with surrounding bone was complete and osseous in nature, and, therefore supports and validates the use of the CEI implant procedure in clinical practice. Historical evolution of the subperiosteal implant to the CEI Subperiosteal dental implants have undergone a long process of continuous evolution since they were first put to clinical use. Historically, the technique was first advocated and employed by Dahl,1 and was continually developed by many others as documented by later studies.2-9 Perhaps even more important were the subsequent contributions of Linkow, which includes modernized designs of subperiosteal implants with regard to supportive structures for the maxilla and the tripodal design for the mandible.10-13 Other American dentists (Bodine, Mentag, Mena, Riviera, and Journal of Oral Implantology 195

Table of Contents for the Digital Edition of Journal of Oral Implantology April 2014

Consolidated Standards of Reporting Trials (CONSORT): Answering the Call for JOI’s Endorsement
Photoelastic Analysis of Stress Distribution With Different Implant Systems
Influence of Abutment Screw Design and Surface Coating on the Bending Flexural Strength of the Implant Set
Comparison of Implant-Abutment Interface Misfits After Casting and Soldering Procedures
Evaluation of Accuracy of Casts of Multiple Internal Connection Implant Prosthesis Obtained From Different Impression Materials and Techniques: An In Vitro Study
The Effect of Different Implant-Abutment Connections on Screw Joint Stability
Effects of pH and Elevated Glucose Levels on the Electrochemical Behavior of Dental Implants
Finite Element Analysis of Provisional Structures of Implant-Supported Complete Prostheses
Saliva Versus Peri-implant Inflammation: Quantification of IL-1b in Partially and Totally Edentulous Patients
Heat Generated During Seating of Dental Implant Fixtures
An Alternative Approach for Augmenting the Anterior Maxilla Using Autogenous Free Gingival Bone Graft for Implant Retained Prosthesis
Nasopalatine Duct Cyst, a Delayed Complication to Successful Dental Implant Placement: Diagnosis and Surgical Management
The Custom Endosteal Implant: Histology and Case Report of a Retrieved Maxillary Custom Osseous-Integrated Implant Nine Years in Service
Occlusal Concepts Application in Resolving Implant Prosthetic Failure: Case Report
Three-Year Follow-Up of a Single Immediate Implant Placed in an Infected Area: A New Approach for Harvesting Autogenous Symphysis Graft
Use of Stress Analysis Methods to Evaluate the Biomechanics of Oral Rehabilitation With Implants

Journal of Oral Implantology April 2014

http://www.brightcopy.net/allen/orim/Glossary
https://www.nxtbook.com/allen/orim/40-6
https://www.nxtbook.com/allen/orim/40-5
https://www.nxtbook.com/allen/orim/40-4
https://www.nxtbook.com/allen/orim/40-s1
https://www.nxtbook.com/allen/orim/40-3
https://www.nxtbook.com/allen/orim/40-2
https://www.nxtbook.com/allen/orim/40-1
https://www.nxtbook.com/allen/orim/39-6
https://www.nxtbook.com/allen/orim/39-5
https://www.nxtbook.com/allen/orim/39-4
https://www.nxtbook.com/allen/orim/39-3
https://www.nxtbook.com/allen/orim/39-s1
https://www.nxtbook.com/allen/orim/39-2
https://www.nxtbook.com/allen/orim/39-1
https://www.nxtbook.com/allen/orim/38-6
https://www.nxtbook.com/allen/orim/38-5
https://www.nxtbook.com/allen/orim/38-s1
https://www.nxtbook.com/allen/orim/38-4
https://www.nxtbook.com/allen/orim/38-3
https://www.nxtbook.com/allen/orim/38-2
https://www.nxtbook.com/allen/orim/38-1
https://www.nxtbookmedia.com