Journal of Oral Implantology June 2014 - (Page 330)

LITERATURE REVIEW A Review of Platelet Derived Growth Factor Playing Pivotal Role in Bone Regeneration Prasun Shah, MD1* Louise Keppler, MD2 James Rutkowski, DMD, PhD3 This article is focused on the literature review and study of recent advances in the field of bone grafting, which involves platelet-derived growth factor (PDGF) as one of the facilitating factors in bone regeneration. This article includes a description of the mechanism of PDGF for use in surgeries where bone grafting is required, which promotes future application of PDGF for faster bone regeneration or inhibition of bone growth if required as in osteosarcoma. The important specific activities of PDGF include mitogenesis (increase in the cell populations of healing cells), angiogenesis (endothelial mitoses into functioning capillaries), and macrophage activation (debridement of the wound site and a second phase source of growth factors for continued repair and bone regeneration). Thus PDGF can be utilized in wound with bone defect to conceal the wound with repair of bony defect. Key Words: PDGF, PDGF receptors, bone grafting, bone regeneration INTRODUCTION P latelet-derived growth factor (PDGF) is a two-chain polypeptide, which belongs to the growth factor family. The original source of PDGF was platelets, but PDGF or PDGF-like peptides have been isolated from a variety of normal and neoplastic tissues, including bone matrix and osteosarcoma cells.1-3 Platelets do not bind to intact endothelium. PDGF is contained in alpha granules of platelets and is released only during blood clotting or when platelets adhere at sites of blood vessel injury. Secretion of platelets can be initiated by exposure of platelets to the foreign surfaces such as subendothelial basement membrane or collagen.4,5 PDGF may serve to promote wound healing since it is the most potent mitogen in serum for cells of mesenchymal origin including fibroblasts, glial cells, and smooth muscle cells, 6-8 1 Maimonides Medical Center, Brooklyn, New York. St. Vincent Charity Hospital, Cleveland, Ohio. Clarion Research Group, Clarion, Pennsylvania. * Corresponding author, e-mail: shahprasun@hotmail.com DOI: 10.1563/AAID-JOI-D-11-00173 2 3 330 Vol. XL /No. Three /2014 PDGF stimulates bone DNA and protein synthesis, and may be a systemic or local regulator of skeletal growth. As a systemic growth factor, it could be released during platelet aggregation and have important effects in the early stages of fracture healing. As a local factor, it may interact with other hormones and growth factors (eg, it promotes bone cells to respond to other factors present in the skeletal tissue).1 In addition to its effects on bone formation, PDGF has been shown to stimulate bone resorption so that it appears to have complex effects on bone remodeling. In this review paper we have focused on the effects of PDGF on bone regeneration. STRUCTURE OF PDGF PDGF was originally identified as an essential component for the culture of serum-dependent cells. Four different chains (A, B, C, and D) are identified in the structure of PDGF. PDGF is now considered as a family of five heterodimeric and homodimeric proteins (PDGF-AB, PDGF-AA, PDGFBB, PDGF-CC, and PDGF-DD).9 The mature parts of the A- and B-chains of PDGF are ;100 amino acid

Table of Contents for the Digital Edition of Journal of Oral Implantology June 2014

Controlled Early Inflammation and Bone Healing—Potential New Treatments
Zygomatic Implants: The Impact of Zygoma Bone Support on Biomechanics
A Comparative Study on Microgap of Premade Abutments and Abutments Cast in Base Metal Alloys
Topical Simvastatin Improves the Pro-Angiogenic and Pro-Osteogenic Properties of Bioglass Putty in the Rat Calvaria Critical-Size Model
Assessment of the Correlation Between Insertion Torque and Resonance Frequency Analysis of Implants Placed in Bone Tissue of Different Densities
Benefits of Rehabilitation With Implants in Masticatory Function: Is Patient Perception of Change in Accordance With the Real Improvement?
A Method for Fabrication of Implant-Supported Fixed Partial Dentures
Safe Sinus Lift: Use of Acrylic Stone Trimmer to Avoid Sinus Lining Perforation
The Effects of Sinus Membrane Pathology on Bone Augmentation and Procedural Outcome Using Minimal Invasive Antral Membrane Balloon Elevation
Cellular Responses to Metal Ions Released From Implants
A Two-Stage Surgical Approach to the Treatment of Severe Peri-Implant Defect: A 30-Month Clinical Follow-Up Report
Eight-Year Follow-Up of a Fixed-Detachable Maxillary Prosthesis Utilizing an Attachment System: Clinical Protocol for Individuals With Skeletal Class III Malocclusions
Active Implant Peri-Apical Lesion: A Case Report Treated Via Guided Bone Regeneration With a 5-year Clinical and Radiographic Follow-up
Flapless Implant Placement: A Case Report
Active Implant Periapical Lesions Leading to Implant Failure: Two Case Reports
A Review of Platelet Derived Growth Factor Playing Pivotal Role in Bone Regeneration
LETTER TO THE EDITOR
REVIEW OF CURRENT LITERATURE

Journal of Oral Implantology June 2014

http://www.brightcopy.net/allen/orim/Glossary
https://www.nxtbook.com/allen/orim/40-6
https://www.nxtbook.com/allen/orim/40-5
https://www.nxtbook.com/allen/orim/40-4
https://www.nxtbook.com/allen/orim/40-s1
https://www.nxtbook.com/allen/orim/40-3
https://www.nxtbook.com/allen/orim/40-2
https://www.nxtbook.com/allen/orim/40-1
https://www.nxtbook.com/allen/orim/39-6
https://www.nxtbook.com/allen/orim/39-5
https://www.nxtbook.com/allen/orim/39-4
https://www.nxtbook.com/allen/orim/39-3
https://www.nxtbook.com/allen/orim/39-s1
https://www.nxtbook.com/allen/orim/39-2
https://www.nxtbook.com/allen/orim/39-1
https://www.nxtbook.com/allen/orim/38-6
https://www.nxtbook.com/allen/orim/38-5
https://www.nxtbook.com/allen/orim/38-s1
https://www.nxtbook.com/allen/orim/38-4
https://www.nxtbook.com/allen/orim/38-3
https://www.nxtbook.com/allen/orim/38-2
https://www.nxtbook.com/allen/orim/38-1
https://www.nxtbookmedia.com