BUILDING ENERGY - Fall 2016 - 37


FIGURE 4: AT THE TOP
LEFT IS A THERMAL
IMAGE OF Z-GIRT SUPPORT
FOR A RAINSCREEN.
OTHER EXAMPLES
SHOWN ARE THOSE OF
THERMALLY BROKEN
RAINSCREEN SUPPORTS.
PRODUCT IMAGES BY
CASCADIA WINDOWS AND
KNIGHT WALL SYSTEMS.
CONTINUED FROM PAGE 35

Working from both the graphical and quantitative
output from THERM, models were strategically probed
to identify the significant heat transfer elements within
a given detail, and ultimately predict the performance
improvements that might result from changes in
detailing.
CASE STUDY ON RAINSCREENS
The investigation fell into two categories: façade
systems, and assembly transitions. The most thermally
problematic transition conditions were found at window
installations, foundation-to-wall transitions, changes in
wall systems, soffits, roof-to-wall transitions, parapets,
roof penetrations, louver openings, existing buildings
with embedded beams and slabs and seismic and
movement joints.
Five basic façade systems were identified that
would be generally applicable to modern commercial
and institutional work and appeared to reflect different
challenges. These were: rainscreens, masonry veneer
walls, insulated metal panels, curtain walls and the
renovation of existing masonry façades.
Rainscreens are popular for commercial façades due
to their ability to control air and moisture movement.
Because the cladding is held off the wall, these systems
require a secondary structural system of rails, Z-girts
and/or clips to support the cladding. Typically made of
highly conductive metals, these members penetrate
through the insulation, causing significant thermal
bridges. While insulation between steel studs has long

been acknowledged to cause thermal bridging, these
rainscreen supports have a similar impact thermally
that was overlooked until recently.
In thermal images of rainscreen façades, a
decrease in thermal performance that ranged from
20 to 60 percent less than the design intended
performance was observed, with the majority
around a 45 to 55 percent decrease. The systems
selected for study all had between two and three
inches of insulation with various support systems,
such as vertical and horizontal Z-girts, as well as
different clip systems. In both vertical
and horizontal orientations,Z-girts demonstrated an
R SI-1.2 (RIP-7.7) reduction in the assembly's

NESEA.ORG * 37


http://www.maplehillarchitects.com http://www.NESEA.ORG

Table of Contents for the Digital Edition of BUILDING ENERGY - Fall 2016

From the Executive Director and Board Chair
New York City is Transforming Buildings for a Low Carbon Future
Does Electric Grid 2.0 Mean Energy Democracy?
Resiliency for Affordable Multifamily Housing: What We Have Learned and What We Still Need to Know
Break It or Lose It: Thermal Bridging in Rainscreen Systems
My PEI is Better Than Your PEI
Life Cycle Assessment at the Speed of Design
From Theory to Reality: Our Journey Toward Sustainability Building a Net Zero Home
Solar Policy in the Northeast: What’s New, What’s Next?
BuildingEnergy Green Pages
Index to Advertisers / Ad.com
BUILDING ENERGY - Fall 2016 - cover1
BUILDING ENERGY - Fall 2016 - cover2
BUILDING ENERGY - Fall 2016 - 3
BUILDING ENERGY - Fall 2016 - 4
BUILDING ENERGY - Fall 2016 - 5
BUILDING ENERGY - Fall 2016 - From the Executive Director and Board Chair
BUILDING ENERGY - Fall 2016 - 7
BUILDING ENERGY - Fall 2016 - 8
BUILDING ENERGY - Fall 2016 - 9
BUILDING ENERGY - Fall 2016 - New York City is Transforming Buildings for a Low Carbon Future
BUILDING ENERGY - Fall 2016 - 11
BUILDING ENERGY - Fall 2016 - 12
BUILDING ENERGY - Fall 2016 - 13
BUILDING ENERGY - Fall 2016 - 14
BUILDING ENERGY - Fall 2016 - 15
BUILDING ENERGY - Fall 2016 - 16
BUILDING ENERGY - Fall 2016 - 17
BUILDING ENERGY - Fall 2016 - 18
BUILDING ENERGY - Fall 2016 - 19
BUILDING ENERGY - Fall 2016 - Does Electric Grid 2.0 Mean Energy Democracy?
BUILDING ENERGY - Fall 2016 - 21
BUILDING ENERGY - Fall 2016 - 22
BUILDING ENERGY - Fall 2016 - 23
BUILDING ENERGY - Fall 2016 - 24
BUILDING ENERGY - Fall 2016 - 25
BUILDING ENERGY - Fall 2016 - Resiliency for Affordable Multifamily Housing: What We Have Learned and What We Still Need to Know
BUILDING ENERGY - Fall 2016 - 27
BUILDING ENERGY - Fall 2016 - 28
BUILDING ENERGY - Fall 2016 - 29
BUILDING ENERGY - Fall 2016 - 30
BUILDING ENERGY - Fall 2016 - 31
BUILDING ENERGY - Fall 2016 - 32
BUILDING ENERGY - Fall 2016 - 33
BUILDING ENERGY - Fall 2016 - Break It or Lose It: Thermal Bridging in Rainscreen Systems
BUILDING ENERGY - Fall 2016 - 35
BUILDING ENERGY - Fall 2016 - 36
BUILDING ENERGY - Fall 2016 - 37
BUILDING ENERGY - Fall 2016 - 38
BUILDING ENERGY - Fall 2016 - 39
BUILDING ENERGY - Fall 2016 - My PEI is Better Than Your PEI
BUILDING ENERGY - Fall 2016 - 41
BUILDING ENERGY - Fall 2016 - 42
BUILDING ENERGY - Fall 2016 - 43
BUILDING ENERGY - Fall 2016 - Life Cycle Assessment at the Speed of Design
BUILDING ENERGY - Fall 2016 - 45
BUILDING ENERGY - Fall 2016 - 46
BUILDING ENERGY - Fall 2016 - 47
BUILDING ENERGY - Fall 2016 - From Theory to Reality: Our Journey Toward Sustainability Building a Net Zero Home
BUILDING ENERGY - Fall 2016 - 49
BUILDING ENERGY - Fall 2016 - 50
BUILDING ENERGY - Fall 2016 - Solar Policy in the Northeast: What’s New, What’s Next?
BUILDING ENERGY - Fall 2016 - 52
BUILDING ENERGY - Fall 2016 - 53
BUILDING ENERGY - Fall 2016 - BuildingEnergy Green Pages
BUILDING ENERGY - Fall 2016 - 55
BUILDING ENERGY - Fall 2016 - 56
BUILDING ENERGY - Fall 2016 - 57
BUILDING ENERGY - Fall 2016 - 58
BUILDING ENERGY - Fall 2016 - 59
BUILDING ENERGY - Fall 2016 - 60
BUILDING ENERGY - Fall 2016 - 61
BUILDING ENERGY - Fall 2016 - 62
BUILDING ENERGY - Fall 2016 - 63
BUILDING ENERGY - Fall 2016 - 64
BUILDING ENERGY - Fall 2016 - 65
BUILDING ENERGY - Fall 2016 - 66
BUILDING ENERGY - Fall 2016 - 67
BUILDING ENERGY - Fall 2016 - 68
BUILDING ENERGY - Fall 2016 - 69
BUILDING ENERGY - Fall 2016 - 70
BUILDING ENERGY - Fall 2016 - 71
BUILDING ENERGY - Fall 2016 - 72
BUILDING ENERGY - Fall 2016 - 73
BUILDING ENERGY - Fall 2016 - 74
BUILDING ENERGY - Fall 2016 - 75
BUILDING ENERGY - Fall 2016 - 76
BUILDING ENERGY - Fall 2016 - 77
BUILDING ENERGY - Fall 2016 - 78
BUILDING ENERGY - Fall 2016 - 79
BUILDING ENERGY - Fall 2016 - 80
BUILDING ENERGY - Fall 2016 - Index to Advertisers / Ad.com
BUILDING ENERGY - Fall 2016 - 82
BUILDING ENERGY - Fall 2016 - cover3
BUILDING ENERGY - Fall 2016 - cover4
http://www.nxtbook.com/naylor/ENEB/ENEB0118
http://www.nxtbook.com/naylor/ENEB/ENEB0217
http://www.nxtbook.com/naylor/ENEB/ENEB0117
http://www.nxtbook.com/naylor/ENEB/ENEB0216
http://www.nxtbook.com/naylor/ENEB/ENEB0116
http://www.nxtbook.com/naylor/ENEB/ENEB0215
http://www.nxtbookMEDIA.com