Inside ASHE - Fall 2017 - 46

Feature

THE
FINANCIAL
IMPACT

of variable speed
ventilation controls in
hospital kitchens
By Brent Morris, business development manager, Melink Corporation-Intelli-Hood®; and
Matt Meyer, sales engineer, Melink Corporation-Intelli-Hood®

D

emand control kitchen ventilation (DCKV) is a means of slowing down
the exhaust fan and subsequent supply air in response to the actual
cooking loads in a commercial kitchen. Traditional commercial kitchen
ventilation systems operate at 100 percent fan speed independent
of the volume of cooking activity and DCKV technology changes
that to provide significant fan energy and conditioned air savings.
By deploying smart sensing technology, both the exhaust and supply fans can be
controlled to capitalize on energy savings and reduce makeup air heating and cooling,
thus increasing safety and reducing ambient kitchen noise levels. The Environmental
Protection Agencys' ENERGY STAR® program recognized DCKV with an Emerging
Technology Award in 2015.

Benefits of DCKV systems
According to the U.S. Energy Information Administration (Forms E1A-871-A and E
of the 2012 Commercial Buildings Energy Consumption Survey), commercial kitchens
consume more than three times the energy of the average commercial building per
square foot, so the opportunity for savings is significant. The effects of cost savings
with demand control ventilation can be significant.
To calculate energy savings realized by DCKV systems, find the sum of the motor
operating savings (energy used to physically spin the fan motors) and conditioned air
savings (energy saved by not needing to condition outside air). While conditioned air
savings have a linear, roughly 1:1, relationship with fan speed reductions, the motor
operating savings benefits from speed to power requirements per the law of affinity.
For example, reducing fan speed by 20 percent reduces the energy consumed by
that fan motor by nearly 50 percent. Reducing fan speed by 40 percent results in the
motor consuming 75 percent less energy than when it is running at 100 percent. This
compounding energy savings in the fan motor along with the conditioned air savings
make for a powerful energy saving combination.
46 INSIDE ASHE | FALL 2017



Table of Contents for the Digital Edition of Inside ASHE - Fall 2017

Letter from the president
What’s new
Pop quiz
The measurement of a health care facility manager: How do you define success?
Creating a program to identify and monitor pressure dependent spaces
Critical considerations for specifying a building automation system for health care
Bright ideas: LED renovation at Boulder Community Health
Selecting the right fire extinguisher for operating rooms
Still battling reheat energy in hospitals: Short- and long-term ideas for hospitals’ biggest energy use
The financial impact of variable speed ventilation controls in hospital kitchens
Data driven culture fuels University of Florida Health’s success in energy and operational optimization
Energy management in a critical access hospital: How Barnesville Hospital reduced energy consumption by 39 percent
Value analysis: Improving operating margin through cost savings
Member spotlight
Advertisers’ index
Inside ASHE - Fall 2017 - Intro
Inside ASHE - Fall 2017 - bellyband1
Inside ASHE - Fall 2017 - bellyband2
Inside ASHE - Fall 2017 - cover1
Inside ASHE - Fall 2017 - cover2
Inside ASHE - Fall 2017 - 3
Inside ASHE - Fall 2017 - 4
Inside ASHE - Fall 2017 - 5
Inside ASHE - Fall 2017 - 6
Inside ASHE - Fall 2017 - 7
Inside ASHE - Fall 2017 - 8
Inside ASHE - Fall 2017 - Letter from the president
Inside ASHE - Fall 2017 - What’s new
Inside ASHE - Fall 2017 - 11
Inside ASHE - Fall 2017 - Pop quiz
Inside ASHE - Fall 2017 - 13
Inside ASHE - Fall 2017 - 14
Inside ASHE - Fall 2017 - 15
Inside ASHE - Fall 2017 - 16
Inside ASHE - Fall 2017 - 17
Inside ASHE - Fall 2017 - The measurement of a health care facility manager: How do you define success?
Inside ASHE - Fall 2017 - 19
Inside ASHE - Fall 2017 - Creating a program to identify and monitor pressure dependent spaces
Inside ASHE - Fall 2017 - 21
Inside ASHE - Fall 2017 - 22
Inside ASHE - Fall 2017 - 23
Inside ASHE - Fall 2017 - Critical considerations for specifying a building automation system for health care
Inside ASHE - Fall 2017 - 25
Inside ASHE - Fall 2017 - 26
Inside ASHE - Fall 2017 - 27
Inside ASHE - Fall 2017 - Bright ideas: LED renovation at Boulder Community Health
Inside ASHE - Fall 2017 - 29
Inside ASHE - Fall 2017 - 30
Inside ASHE - Fall 2017 - 31
Inside ASHE - Fall 2017 - 32
Inside ASHE - Fall 2017 - 33
Inside ASHE - Fall 2017 - Selecting the right fire extinguisher for operating rooms
Inside ASHE - Fall 2017 - 35
Inside ASHE - Fall 2017 - 36
Inside ASHE - Fall 2017 - 37
Inside ASHE - Fall 2017 - 38
Inside ASHE - Fall 2017 - 39
Inside ASHE - Fall 2017 - 40
Inside ASHE - Fall 2017 - 41
Inside ASHE - Fall 2017 - Still battling reheat energy in hospitals: Short- and long-term ideas for hospitals’ biggest energy use
Inside ASHE - Fall 2017 - 43
Inside ASHE - Fall 2017 - 44
Inside ASHE - Fall 2017 - 45
Inside ASHE - Fall 2017 - The financial impact of variable speed ventilation controls in hospital kitchens
Inside ASHE - Fall 2017 - 47
Inside ASHE - Fall 2017 - 48
Inside ASHE - Fall 2017 - 49
Inside ASHE - Fall 2017 - 50
Inside ASHE - Fall 2017 - 51
Inside ASHE - Fall 2017 - Data driven culture fuels University of Florida Health’s success in energy and operational optimization
Inside ASHE - Fall 2017 - 53
Inside ASHE - Fall 2017 - 54
Inside ASHE - Fall 2017 - 55
Inside ASHE - Fall 2017 - Energy management in a critical access hospital: How Barnesville Hospital reduced energy consumption by 39 percent
Inside ASHE - Fall 2017 - 57
Inside ASHE - Fall 2017 - Value analysis: Improving operating margin through cost savings
Inside ASHE - Fall 2017 - 59
Inside ASHE - Fall 2017 - Member spotlight
Inside ASHE - Fall 2017 - Advertisers’ index
Inside ASHE - Fall 2017 - 62
Inside ASHE - Fall 2017 - cover3
Inside ASHE - Fall 2017 - cover4
Inside ASHE - Fall 2017 - outsert1
Inside ASHE - Fall 2017 - outsert2
Inside ASHE - Fall 2017 - 70
Inside ASHE - Fall 2017 - 71
Inside ASHE - Fall 2017 - 72
Inside ASHE - Fall 2017 - 73
Inside ASHE - Fall 2017 - 74
Inside ASHE - Fall 2017 - 75
http://www.nxtbook.com/naylor/ENVQ/ENVQ0417
http://www.nxtbook.com/naylor/ENVQ/ENVQ0317
http://www.nxtbook.com/naylor/ENVQ/ENVQ0217
http://www.nxtbook.com/naylor/ENVQ/ENVQ0117
http://www.nxtbook.com/naylor/ENVQ/ENVQ0416
http://www.nxtbook.com/naylor/ENVQ/ENVQ0316
http://www.nxtbook.com/naylor/ENVQ/ENVQ0216
http://www.nxtbook.com/naylor/ENVQ/ENVQ0116
http://www.nxtbook.com/naylor/ENVQ/ENVQ0415
http://www.nxtbook.com/naylor/ENVQ/ENVQ0315
http://www.nxtbook.com/naylor/ENVQ/ENVQ0215
http://www.nxtbook.com/naylor/ENVQ/ENVQ0115
http://www.nxtbook.com/naylor/ENVQ/ENVQ0414
http://www.nxtbook.com/naylor/ENVQ/ENVQ0314
http://www.nxtbook.com/naylor/ENVQ/ENVQ0214
http://www.nxtbook.com/naylor/ENVQ/ENVQ0114
http://www.nxtbook.com/naylor/ENVQ/ENVQ0413
http://www.nxtbook.com/naylor/ENVQ/ENVQ0313
http://www.nxtbook.com/naylor/ENVQ/ENVQ0213
http://www.nxtbook.com/nxtbooks/naylor/ENVQ0113
http://www.nxtbook.com/nxtbooks/naylor/ENVQ0412
http://www.nxtbookMEDIA.com