Inside ASHE - Fall 2017 - 51

warranty on the original kitchen hood.
Some systems may be UL 510 listed;
however, this certification is only for the
electrical component enclosure and not
the sensors used to modify the exhaust
hoods or duct work.
Installation of sensors and the powering
of the system components do not
constitute a functional DCKV system.
To ensure optimal operation and safety
standards, have the contractor conduct
a comprehensive commissioning of the
installed system. This commissioning

of complexity to design considerations.
When specifying VFDs, a myriad options
and features are offered by each
manufacturer, but two of the biggest
decisions are between standard versus
by-pass features and the location of the
drive. Generally, place the VFD as close
to the fan motor as possible to help
protect the motor and maintain a long
useful life of the equipment; however,
seek guidance from the VFD and motor
manufacturer during the specification
process for your application.

should include ensuring the correct
fire mode response, calibration of the
sensors to the cooking appliances,
properly programmed VFDs, supply air
integration, and capture and containment
of cooking effluent.
The kitchen operations and building
maintenance personnel should also be
property trained in the operation and
maintenance of the system. A properly
maintained DCKV system will ensure
continued energy savings and safety for
the building occupants.

Retrofit applications
The first step is to obtain detailed site
information pertaining to the kitchen
ventilation system, kitchen hoods,
appliances, electrical systems, and any
other pertinent systems associated with
the mechanical systems. A thorough
assessment of the existing ventilation
systems' performance and ability to
capture and contain cooking effluent is
critical prior to applying a DCKV system.
This information and observance should
be made by a qualified contractor
or system supplier with in-depth
knowledge of HVAC balancing and
commercial cooking environments.
A critical step in the initial
assessment, and a key cost driver,
is the existing electrical system
configuration and fan motor ratings
and performance. The scope of work for
implementation includes the mounting
and powering of the VFDs to take the
place of the traditional motor starters
for fan control. Motor load wiring
needs to be run in separate conduits
for multiple fan motors as to not cause
electrical interference between motors
being commanded to run at separate
frequencies by the VFDs. Likewise,
fan motors must be capable of being
controlled by VFDs and must meet
compliance standards.
Following the site assessment, the
installing contractor or manufacturer
will design and engineer the kitchen
DCKV system in accordance with the
findings for optimal performance and
energy savings. Ensure that the installed
product is UL 710 listed for usage in
a commercial kitchen hood. In some
cases a DCKV system that is non-UL
compliant may void the manufacturer's
876445_MIURA.indd 1

www.ashe.org 51
8/3/17 2:24 PM


http://www.miuraboiler.com http://www.miuraboiler.com/qsx http://www.ashe.org

Table of Contents for the Digital Edition of Inside ASHE - Fall 2017

Letter from the president
What’s new
Pop quiz
The measurement of a health care facility manager: How do you define success?
Creating a program to identify and monitor pressure dependent spaces
Critical considerations for specifying a building automation system for health care
Bright ideas: LED renovation at Boulder Community Health
Selecting the right fire extinguisher for operating rooms
Still battling reheat energy in hospitals: Short- and long-term ideas for hospitals’ biggest energy use
The financial impact of variable speed ventilation controls in hospital kitchens
Data driven culture fuels University of Florida Health’s success in energy and operational optimization
Energy management in a critical access hospital: How Barnesville Hospital reduced energy consumption by 39 percent
Value analysis: Improving operating margin through cost savings
Member spotlight
Advertisers’ index
Inside ASHE - Fall 2017 - Intro
Inside ASHE - Fall 2017 - bellyband1
Inside ASHE - Fall 2017 - bellyband2
Inside ASHE - Fall 2017 - cover1
Inside ASHE - Fall 2017 - cover2
Inside ASHE - Fall 2017 - 3
Inside ASHE - Fall 2017 - 4
Inside ASHE - Fall 2017 - 5
Inside ASHE - Fall 2017 - 6
Inside ASHE - Fall 2017 - 7
Inside ASHE - Fall 2017 - 8
Inside ASHE - Fall 2017 - Letter from the president
Inside ASHE - Fall 2017 - What’s new
Inside ASHE - Fall 2017 - 11
Inside ASHE - Fall 2017 - Pop quiz
Inside ASHE - Fall 2017 - 13
Inside ASHE - Fall 2017 - 14
Inside ASHE - Fall 2017 - 15
Inside ASHE - Fall 2017 - 16
Inside ASHE - Fall 2017 - 17
Inside ASHE - Fall 2017 - The measurement of a health care facility manager: How do you define success?
Inside ASHE - Fall 2017 - 19
Inside ASHE - Fall 2017 - Creating a program to identify and monitor pressure dependent spaces
Inside ASHE - Fall 2017 - 21
Inside ASHE - Fall 2017 - 22
Inside ASHE - Fall 2017 - 23
Inside ASHE - Fall 2017 - Critical considerations for specifying a building automation system for health care
Inside ASHE - Fall 2017 - 25
Inside ASHE - Fall 2017 - 26
Inside ASHE - Fall 2017 - 27
Inside ASHE - Fall 2017 - Bright ideas: LED renovation at Boulder Community Health
Inside ASHE - Fall 2017 - 29
Inside ASHE - Fall 2017 - 30
Inside ASHE - Fall 2017 - 31
Inside ASHE - Fall 2017 - 32
Inside ASHE - Fall 2017 - 33
Inside ASHE - Fall 2017 - Selecting the right fire extinguisher for operating rooms
Inside ASHE - Fall 2017 - 35
Inside ASHE - Fall 2017 - 36
Inside ASHE - Fall 2017 - 37
Inside ASHE - Fall 2017 - 38
Inside ASHE - Fall 2017 - 39
Inside ASHE - Fall 2017 - 40
Inside ASHE - Fall 2017 - 41
Inside ASHE - Fall 2017 - Still battling reheat energy in hospitals: Short- and long-term ideas for hospitals’ biggest energy use
Inside ASHE - Fall 2017 - 43
Inside ASHE - Fall 2017 - 44
Inside ASHE - Fall 2017 - 45
Inside ASHE - Fall 2017 - The financial impact of variable speed ventilation controls in hospital kitchens
Inside ASHE - Fall 2017 - 47
Inside ASHE - Fall 2017 - 48
Inside ASHE - Fall 2017 - 49
Inside ASHE - Fall 2017 - 50
Inside ASHE - Fall 2017 - 51
Inside ASHE - Fall 2017 - Data driven culture fuels University of Florida Health’s success in energy and operational optimization
Inside ASHE - Fall 2017 - 53
Inside ASHE - Fall 2017 - 54
Inside ASHE - Fall 2017 - 55
Inside ASHE - Fall 2017 - Energy management in a critical access hospital: How Barnesville Hospital reduced energy consumption by 39 percent
Inside ASHE - Fall 2017 - 57
Inside ASHE - Fall 2017 - Value analysis: Improving operating margin through cost savings
Inside ASHE - Fall 2017 - 59
Inside ASHE - Fall 2017 - Member spotlight
Inside ASHE - Fall 2017 - Advertisers’ index
Inside ASHE - Fall 2017 - 62
Inside ASHE - Fall 2017 - cover3
Inside ASHE - Fall 2017 - cover4
Inside ASHE - Fall 2017 - outsert1
Inside ASHE - Fall 2017 - outsert2
Inside ASHE - Fall 2017 - 70
Inside ASHE - Fall 2017 - 71
Inside ASHE - Fall 2017 - 72
Inside ASHE - Fall 2017 - 73
Inside ASHE - Fall 2017 - 74
Inside ASHE - Fall 2017 - 75
http://www.nxtbook.com/naylor/ENVQ/ENVQ0417
http://www.nxtbook.com/naylor/ENVQ/ENVQ0317
http://www.nxtbook.com/naylor/ENVQ/ENVQ0217
http://www.nxtbook.com/naylor/ENVQ/ENVQ0117
http://www.nxtbook.com/naylor/ENVQ/ENVQ0416
http://www.nxtbook.com/naylor/ENVQ/ENVQ0316
http://www.nxtbook.com/naylor/ENVQ/ENVQ0216
http://www.nxtbook.com/naylor/ENVQ/ENVQ0116
http://www.nxtbook.com/naylor/ENVQ/ENVQ0415
http://www.nxtbook.com/naylor/ENVQ/ENVQ0315
http://www.nxtbook.com/naylor/ENVQ/ENVQ0215
http://www.nxtbook.com/naylor/ENVQ/ENVQ0115
http://www.nxtbook.com/naylor/ENVQ/ENVQ0414
http://www.nxtbook.com/naylor/ENVQ/ENVQ0314
http://www.nxtbook.com/naylor/ENVQ/ENVQ0214
http://www.nxtbook.com/naylor/ENVQ/ENVQ0114
http://www.nxtbook.com/naylor/ENVQ/ENVQ0413
http://www.nxtbook.com/naylor/ENVQ/ENVQ0313
http://www.nxtbook.com/naylor/ENVQ/ENVQ0213
http://www.nxtbook.com/nxtbooks/naylor/ENVQ0113
http://www.nxtbook.com/nxtbooks/naylor/ENVQ0412
http://www.nxtbookMEDIA.com