ASHRAE Journal - September 2009 - 39

Low-Rise Residential Buildings, as a baseline. The DOE 2.2 diffused light in, while eliminating direct solar heat gain. The v144c3 modeling software was used to simulate performance design called for 100% daylighting in the first floor office spaces throughout the year using ASHRAE design conditions and local between 10 a.m. and 2 p.m. and for daylighting to meet 50% utility rates for Boulder, Colo. The final results of the energy of the lab’s lighting needs. model predicted a 41% savings compared to Standard 90.1-1999 and a 46% savings compared to Labs21 modeling guidelines Indoor Air Quality and Thermal Comfort over a one-year simulation period. As a Labs21 partner and U.S. Green Building Council LEED The S&TF shares a central heating and cooling plant with an Platinum facility, the NREL S&TF building was designed with existing laboratory on site. However, as part of the construction, not only energy efficiency in mind, but a healthy environment new variable speed chillers, plate and frame heat exchangers, for the occupants as well. cooling towers and high-efficiency boilers were added to the As previously stated, the office portion of the facility uses an existing central plant. All of the building’s HVAC systems are underfloor air-distribution system. This displacement system high efficiency, and all motors incorporate variable frequency design achieves an air change effectiveness of 0.95 as deterdrives. The building takes advantage of the low design wet-bulb mined by the ANSI/ASHRAE Standard 129-1997, Measuring temperature of the region by using direct and indirect evapora- Air-Change Effectiveness, and using the 2001 ASHRAE Handtive cooling in air-handling units. book—Fundamentals, Chapter 32, Space Air Diffusion. The The lab portion of the building uses variable air volume floor diffusers are ASHRAE Group C. Supply air temperature systems on both the supply and lab exhaust systems. As the is slightly lower than room temperature and supplied at low fume hood exhaust requirevelocity directly into the ments increase, the facility’s occupied zone. Contamisix exhaust fans stage on nants and heat are carried as required. Each fan is a by convective flows created direct drive, 20,000 cfm by heat sources into the up(9439 L/s) fan with VFD per part of the room to the operation. The fans are conreturn air grilles, located nected to a plenum that is high in the space. maintained at a 1.5 in. w.g. A permanent carbon di(374 Pa) negative pressure. oxide monitoring system The exhaust plenum uses was installed in the facility modulating bypass dampto optimize the ventilation ers to maintain the required airflow rate in the facility. pressure. A permanent CO2 sensor The exhaust plenum is is located in the main return fitted with an energy recov- Daylighting strategies in the Science and Technology Facility’s lab area duct of the air-handling ery runaround coil system provide for a more pleasing work environment. system, AHU-1, as well as to precondition the outside on the exterior of the facilair at the main air-handling units. The sensible energy heat ity to measure the baseline outdoor level in parts per million. recovery system is 63% effective. This runaround coil system The return air CO2 sensor varies the outside airflow to maintain provides water-side economizer cooling for the laboratory pro- carbon dioxide differential levels in the facility at, or below, 530 cess, cooling water when the outside air temperature is below ppm compared to ambient levels. 60°F (16°C). The rejected heat is recovered to preheat outside The building air-handling units, AHU-1 and MAU-1,2,3, air at the lab makeup air-handling units when the outside air have three-stage filtration to ensure particle levels introduced temperature is below 30°F (–1°C). from outside air are below recommendations listed in ANSI/ The main building air-handling units supply only the required ASHRAE Standard 62.1-1999, Ventilation for Acceptable airflow for minimum ventilation and exhaust makeup air. Any Indoor Air Quality, filtration with prefilter MERV values of 5 supplemental sensible cooling or heating is provided from fan and 8, with a final filter MERV value of 14. For the safety and coil units located within the lab. This approach significantly health of the employees throughout the facility, all of the chemireduced the amount of outside air required and eliminated the cal fume hoods in the facility were tested and comply with the need for reheating laboratory supply air. ANSI/ASHRAE Standard 110, Method of Testing Performance The office areas use two energy-saving strategies in daylight- of Laboratory Fume Hoods. Pressure differential sensors are ing and underfloor air distribution. The office area is served by located in the lab areas to validate pressure relationships and an underfloor air-distribution system, increasing the number of alarm the building management system if required pressure available economizer hours of operation. Due to the east-west relationships are at risk of not being met. orientation of the building, the office area takes advantage of During construction, and prior to occupancy, an indoor south-facing lightshelf style solar shading elements that allow air quality management plan was incorporated. Per the U.S. September 2009 ASHRAE Journal Photo Credit: Bill Timmerman, courtesy of SmithGroup 39

ASHRAE Journal - September 2009

Table of Contents for the Digital Edition of ASHRAE Journal - September 2009

ASHRAE Journal - September 2009
Contents
Commentary
Industry News
Letters
Meetings and Shows
Getting to Net Zero
Feature Articles
How High Can You Go? Building Height and Net Zero
Lab for Learning
Solar Hot-Water Heating System: Lessons Learned
50th Anniversary—Low Pressure Steam Heating Systems
Building Sciences
Products
Emerging Technologies
People
Classified Advertising
Advertisers Index
ASHRAE Journal - September 2009 - ASHRAE Journal - September 2009
ASHRAE Journal - September 2009 - Cover2
ASHRAE Journal - September 2009 - 1
ASHRAE Journal - September 2009 - 2
ASHRAE Journal - September 2009 - Contents
ASHRAE Journal - September 2009 - 4
ASHRAE Journal - September 2009 - Commentary
ASHRAE Journal - September 2009 - Industry News
ASHRAE Journal - September 2009 - 7
ASHRAE Journal - September 2009 - 8
ASHRAE Journal - September 2009 - 9
ASHRAE Journal - September 2009 - Letters
ASHRAE Journal - September 2009 - 11
ASHRAE Journal - September 2009 - 12
ASHRAE Journal - September 2009 - 13
ASHRAE Journal - September 2009 - 14
ASHRAE Journal - September 2009 - 15
ASHRAE Journal - September 2009 - Meetings and Shows
ASHRAE Journal - September 2009 - 17
ASHRAE Journal - September 2009 - Feature Articles
ASHRAE Journal - September 2009 - 19
ASHRAE Journal - September 2009 - 20
ASHRAE Journal - September 2009 - 21
ASHRAE Journal - September 2009 - 22
ASHRAE Journal - September 2009 - 23
ASHRAE Journal - September 2009 - 24
ASHRAE Journal - September 2009 - 25
ASHRAE Journal - September 2009 - How High Can You Go? Building Height and Net Zero
ASHRAE Journal - September 2009 - 27
ASHRAE Journal - September 2009 - 28
ASHRAE Journal - September 2009 - 29
ASHRAE Journal - September 2009 - 30
ASHRAE Journal - September 2009 - 31
ASHRAE Journal - September 2009 - 32
ASHRAE Journal - September 2009 - 32a
ASHRAE Journal - September 2009 - 32b
ASHRAE Journal - September 2009 - 33
ASHRAE Journal - September 2009 - 34
ASHRAE Journal - September 2009 - 35
ASHRAE Journal - September 2009 - 36
ASHRAE Journal - September 2009 - 37
ASHRAE Journal - September 2009 - Lab for Learning
ASHRAE Journal - September 2009 - 39
ASHRAE Journal - September 2009 - 40
ASHRAE Journal - September 2009 - 41
ASHRAE Journal - September 2009 - 42
ASHRAE Journal - September 2009 - 43
ASHRAE Journal - September 2009 - Solar Hot-Water Heating System: Lessons Learned
ASHRAE Journal - September 2009 - 45
ASHRAE Journal - September 2009 - 46
ASHRAE Journal - September 2009 - 47
ASHRAE Journal - September 2009 - 48
ASHRAE Journal - September 2009 - 49
ASHRAE Journal - September 2009 - 50
ASHRAE Journal - September 2009 - 51
ASHRAE Journal - September 2009 - 52
ASHRAE Journal - September 2009 - 53
ASHRAE Journal - September 2009 - 50th Anniversary—Low Pressure Steam Heating Systems
ASHRAE Journal - September 2009 - 55
ASHRAE Journal - September 2009 - 56
ASHRAE Journal - September 2009 - 57
ASHRAE Journal - September 2009 - 58
ASHRAE Journal - September 2009 - 59
ASHRAE Journal - September 2009 - 60
ASHRAE Journal - September 2009 - 61
ASHRAE Journal - September 2009 - 62
ASHRAE Journal - September 2009 - 63
ASHRAE Journal - September 2009 - 64
ASHRAE Journal - September 2009 - 65
ASHRAE Journal - September 2009 - 66
ASHRAE Journal - September 2009 - 67
ASHRAE Journal - September 2009 - 68
ASHRAE Journal - September 2009 - 69
ASHRAE Journal - September 2009 - 70
ASHRAE Journal - September 2009 - 71
ASHRAE Journal - September 2009 - Building Sciences
ASHRAE Journal - September 2009 - 73
ASHRAE Journal - September 2009 - 74
ASHRAE Journal - September 2009 - 75
ASHRAE Journal - September 2009 - 76
ASHRAE Journal - September 2009 - 77
ASHRAE Journal - September 2009 - 78
ASHRAE Journal - September 2009 - 79
ASHRAE Journal - September 2009 - 80
ASHRAE Journal - September 2009 - 81
ASHRAE Journal - September 2009 - Products
ASHRAE Journal - September 2009 - 83
ASHRAE Journal - September 2009 - Emerging Technologies
ASHRAE Journal - September 2009 - 85
ASHRAE Journal - September 2009 - 86
ASHRAE Journal - September 2009 - 87
ASHRAE Journal - September 2009 - 88
ASHRAE Journal - September 2009 - 89
ASHRAE Journal - September 2009 - People
ASHRAE Journal - September 2009 - 91
ASHRAE Journal - September 2009 - 92
ASHRAE Journal - September 2009 - Classified Advertising
ASHRAE Journal - September 2009 - 94
ASHRAE Journal - September 2009 - 95
ASHRAE Journal - September 2009 - Advertisers Index
ASHRAE Journal - September 2009 - Cover3
ASHRAE Journal - September 2009 - Cover4
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_ABEDGD
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201910
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201909
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2019septmeber_v2
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2019september
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201908
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201907
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201906
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201905
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201904
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_2019april
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201903
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_2019march
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201902
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201901
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_showguide2019
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_2018december
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_2018november
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2018fall_v2
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2018fall
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_2018october
http://www.nxtbook.com/nxtbooks/ashrae/ashraemexico_2018
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201810
http://www.nxtbook.com/nxtbooks/ashrae/ashraeinsights_201806
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201805
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201804
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201803
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201712
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201711
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201710
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2017fall_v2
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2017fall
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201709
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201705
http://www.nxtbook.com/nxtbooks/ashrae/ashrae_meetinginsert_201610
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2016fall_v2
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2016fall
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_acrexindia
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2015summer_v2
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2015summer
http://www.nxtbook.com/nxtbooks/amca/2014summer2
http://www.nxtbook.com/nxtbooks/amca/2014summer
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_acma_2014summer
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201311
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201309
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_acmasupp_2013fall
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201305
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201303
http://www.nxtbook.com/nxtbooks/ashrae/pubcatalog_2013winter
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201211
http://www.nxtbook.com/nxtbooks/ashrae/achr_expo_mexico2012
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201209
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201208_v3
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201208_v2
http://www.nxtbook.com/nxtbooks/ashrae/pubcatalog_2012summer
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201205
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201203
http://www.nxtbook.com/nxtbooks/ashrae/pubcatalog_2012winter
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201111_v2
http://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201109_v2
http://www.nxtbook.com/nxtbooks/ashrae/pubcatalog_2011summer
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201105
http://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201103
http://www.nxtbookMEDIA.com