Clinical OMICs - Issue 7 - (Page 8)

The Future of Cancer Genomics Dan Koboldt A s you have probably noticed, there's been a major shift in the focus of next-gen sequencing over the past couple of years. First it was all about new genomes, new techniques, and discovery. Now it's all about translation. We are entering a new era in next-gen sequencing, one in which NGS technologies will not only be used for discovery, but will be integrated into clinical care. A review in the latest issue of Human Molecular Genetics discusses NGSenabled cancer genomics from the clinician's point of view. In it, the authors highlight recent findings from large-scale cancer genomics efforts-such as the Cancer Genome Atlas-and offer their perspectives on the significant challenge facing us: translating the knowledge from such massive "oncogenomic" datasets to the clinic. Large-Scale Tumor Genomics Studies Ambitious efforts by The Cancer Genome Atlas (TCGA) and the International Cancer Genomics Consortium (ICGC) have provided, in the last few years, comprehensive molecular profiles of the most common cancer types. Some of the key findings included: Glioblastoma (GBM) TCGA's first integrative analysis, a study of 91 tumors, revealed: * Frequent mutations affecting TP53 (37% of tumors) and NF1 (14%) * A subset of tumors with epigenetic abnormalities (MGMT promoter methylation) and hyper-mutation. * Gene expression-based definition of four subtypes: proneural, neural, classical, and mesenchymal 8 Clinical OMICs July 16, 2014 www.clinicalomics.com http://www.clinicalomics.com

Table of Contents for the Digital Edition of Clinical OMICs - Issue 7

Contents

Clinical OMICs - Issue 7

https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol3iss9
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol3iss8
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol3iss7
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol3iss6
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol3iss5
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol3iss4
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol3iss3
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol3iss2
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol3iss1
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss12
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss11
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss10
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss9
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss8
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss7
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss6
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss5
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss4
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss3
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss2
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_vol2iss1
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue15
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue14
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue13
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue12
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue11
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue10
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue9
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue8
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue7
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue6
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue5
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue4
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue3
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue2
https://www.nxtbook.com/nxtbooks/gen/clinical_omics_issue1
https://www.nxtbookmedia.com