IEEE Circuits and Systems Magazine - Q3 2018 - 47

[25] S. Priya, C.-T. Chen, D. Fye, and J. Zahnd, "Piezoelectric windmill:
A novel solution to remote sensing," Jpn. J. Appl. Phys., vol. 44, no. 1L,
pp. L104, 2004.
[26] H. W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. E. Newnham,
and H. F. Hofmann, "Energy harvesting using a piezoelectric "cymbal"
transducer in dynamic environment," Jpn. J. Appl. Phys., vol. 43, no. 9R,
p. 6178, 2004.
[27] J. Allen and A. Smits, "Energy harvesting eel," J. Fluids Struct., vol.
15, no. 3-4, pp. 629-640, 2001.
[28] G. W. Taylor, J. R. Burns, S. Kammann, W. B. Powers, and T. R. Welsh,
"The energy harvesting eel: a small subsurface ocean/river power generator," IEEE J. Ocean. Eng., vol. 26, no. 4, pp. 539-547, 2001.
[29] B. Ahmed-Seddik, G. Despesse, S. Boisseau, and E. Defay, "Selfpowered resonant frequency tuning for piezoelectric vibration energy
harvesters," in Proc. J. Physics, Conf. Ser., 2013, vol. 476, p. 012069.
[30] D. Zhu, M. J. Tudor, and S. P. Beeby, "Strategies for increasing the
operating frequency range of vibration energy harvesters: A review,"
Meas. Sci. Technol., vol. 21, no. 2, p. 022001, 2010.
[31] G. Despesse, T. Jager, C. Condemine, and P.-D. Berger, "Mechanical
vibrations energy harvesting and power management," in Proc. IEEE
Sensors, 2008, pp. 29-32.
[32] S. Boisseau, G. Despesse, and B. A. Seddik, "Nonlinear h-shaped
springs to improve efficiency of vibration energy harvesters," Trans.
ASME, J. Appl. Mech., vol. 80, no. 6, p. 061013, 2013.
[33] C. Eichhorn, R. Tchagsim, N. Wilhelm, and P. Woias, "A smart and
self-sufficient frequency tunable vibration energy harvester," J. Micromech. Microeng., vol. 21, no. 10, p. 104003, 2011.
[34] B. A. Seddik, G. Despessse, S. Boisseau, and E. Defay, "Increased
bandwidth of mechanical energy harvester," Sens. Transducers, vol. 13,
p. 73, 2011.
[35] B. A. Seddik, G. Despesse, and E. Defay, "Wideband mechanical energy harvester based on piezoelectric longitudinal mode," in Proc. IEEE
10th Int. New Circuits and Systems Conf., 2012, pp. 453-456.
[36] A. Romani, M. Dini, M. Filippi, M. Tartagni, and E. Sangiorgi,
Nanopower-Integrated Electronics for Energy Harvesting, Conversion, and
Management. New York: Wiley, 2016, pp. 275-289.
[37] A. C. Waterbury and P. K. Wright, "Vibration energy harvesting to
power condition monitoring sensors for industrial and manufacturing
equipment," Proc. Inst. Mech. Eng., C, J. Mech. Eng. Sci., vol. 227, no. 6,
pp. 1187-1202, 2013.
[38] T. Shimanouchi, O. Toyoda, and F. Nakazawa, "A wireless motorcondition, precise analysis system using a highly efficient vibration-energy harvester," in Proc. IEEE 11th Int. Conf. Industrial Informatics, 2013,
pp. 402-407.
[39] K. Najafi, T. Galchev, E. Aktakka, R. Peterson, and J. McCullagh, "Microsystems for energy harvesting," in Proc. IEEE 16th Int. Solid-State Sensors
Actuators and Microsystems Conf. (TRANSDUCERS), 2011, pp. 1845-1850.
[40] R. Elfrink, S. Matova, C. De Nooijer, M. Jambunathan, M. Goedbloed, J. Van de Molengraft, V. Pop, R. Vullers, M. Renaud, and R. Van
Schaijk, "Shock induced energy harvesting with a MEMS harvester for
automotive applications," in Proc. IEEE Int. Electron Devices Meeting,
2011, pp. 29-25.
[41] A. Tabesh and L. G. Frechette, "A low-power stand-alone adaptive
circuit for harvesting energy from a piezoelectric micropower generator," IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 840-849, 2010.
[42] E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, "Energy harvesting using piezoelectric materials: Case of random vibrations," J. Electroceramics, vol. 19, no. 4, pp. 349-355, 2007.
[43] S. Xu, K. D. Ngo, T. Nishida, G.-B. Chung, and A. Sharma, "Low frequency pulsed resonant converter for energy harvesting," IEEE Trans.
Power Electron., vol. 22, no. 1, pp. 63-68, 2007.
[44] N. Kong, T. Cochran, D. S. Ha, H.-C. Lin, and D. J. Inman, "A selfpowered power management circuit for energy harvested by a piezoelectric cantilever," in Proc. IEEE 25th Annu. Applied Power Electronics
Conf. and Exposition, 2010, pp. 2154-2160.
[45] D. Kwon and G. A. Rincon-Mora, "A single-inductor AC-DC piezoelectric energy-harvester/battery-charger IC converting ±(0.35 to 1.2v) to
(2.7 to 4.5v)," in Proc. IEEE Int. Solid-State Circuits Conf., 2010, pp. 494-495.
[46] N. Kong and D. S. Ha, "Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking," IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2298-2308, 2012.
[47] C. Lu, C.-Y. Tsui, and W.-H. Ki, "Vibration energy scavenging system with maximum power tracking for micropower applications,"

THIRD quaRTeR 2018

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 11, pp.
2109-2119, 2011.
[48] M. Shim, J. Kim, J. Jeong, S. Park, and C. Kim, "Self-powered 30 μw
to 10 mw piezoelectric energy harvesting system with 9.09 ms/v maximum power point tracking time," IEEE J. Solid-State Circuits, vol. 50, no.
10, pp. 2367-2379, 2015.
·
[49] J. L. Wardlaw and A. I. Karsilayan, "Self-powered rectifier for energy harvesting applications," IEEE J. Emerg. Sel. Topics Circuits Syst.,
vol. 1, no. 3, pp. 308-320, 2011.
[50] D. Kwon and G. A. Rincón-Mora, "A single-inductor 0.35 μm CMOS
energy-investing piezoelectric harvester," IEEE J. Solid-State Circuits,
vol. 49, no. 10, pp. 2277-2291, 2014.
[51] N. Kong, D. S. Ha, A. Erturk, and D. J. Inman, "Resistive impedance
matching circuit for piezoelectric energy harvesting," J. Intell. Mater.
Syst. Struct., vol. 21, no. 13, pp. 1293-1302, 2010.
[52] M. Renaud, K. Karakaya, T. Sterken, P. Fiorini, C. Van Hoof, and R.
Puers, "Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters," Sens. Actuators A, Phys., vol. 145, pp.
380-386, 2008.
[53] J. Liang and W.-H. Liao, "Energy flow in piezoelectric energy harvesting systems," Smart Mater. Struct., vol. 20, no. 1, p. 015005, 2011.
[54] J. Liang and W.-H. Liao, "Piezoelectric energy harvesting and dissipation on structural damping," J. Intell. Mater. Syst. Struct., 2008.
[55] C. Luo and H. F. Hofmann, "Wideband energy harvesting for piezoelectric devices with linear resonant behavior," IEEE Trans. Ultrason.,
Ferroelect., Freq. Control, vol. 58, no. 7, pp. 1294-1301, 2011.
[56] A. L. Stein and H. Hofmann, "Autonomous wideband piezoelectric
energy harvesting utilizing a resonant inverter," IEEE Trans. Power Electron., 2016.
[57] E. Lefeuvre, D. Audigier, C. Richard, and D. Guyomar, "Buck-boost
converter for sensorless power optimization of piezoelectric energy harvester," IEEE Trans. Power Electron., vol. 22, no. 5, pp. 2018-2025, 2007.
[58] K. D. T. Ngo, A. Phipps, T. Nishida, J. Lin, and S. Xu, "Power converters for piezoelectric energy extraction," in Proc. American Society of
Mechanical Engineers Int. Mechanical Engineering Congr. and Exposition,
2006, pp. 597-602.
[59] J. Brufau-Penella and M. Puig-Vidal, "Piezoelectric energy harvesting improvement with complex conjugate impedance matching," J. Intell. Mater. Syst. Struct., vol. 20, no. 5, pp. 597-608, 2009.
[60] J. R. Liang and W. H. Liao, "Piezoelectric energy harvesting and
dissipation on structural damping," J. Intell. Mater. Syst. Struct., vol. 20,
no. 5, pp. 515-527, 2009.
[61] J. Liang and W. H. Liao, "Energy flow in piezoelectric energy harvesting systems," Smart Mater. Struct., vol. 20, no. 1, p. 015005, 2011.
[62] P. Li, Y. Wen, C. Jia, and X. Li, "A magnetoelectric composite energy
harvester and power management circuit," IEEE Trans. Ind. Electron.,
vol. 58, no. 7, pp. 2944-2951, 2011.
[63] P. Li, Y. Wen, W. Yin, and H. Wu, "An upconversion management
circuit for low-frequency vibrating energy harvesting," IEEE Trans. Ind.
Electron., vol. 61, no. 7, pp. 3349-3358, 2014.
[64] H. Shen, H. Ji, J. Qiu, Y. Bian, and D. Liu, "Adaptive synchronized
switch harvesting: A new piezoelectric energy harvesting scheme for
wideband vibrations," Sens. Actuators A, Phys., vol. 226, pp. 21-36, 2015.
[65] L. Tang and Y. Yang, "Analysis of synchronized charge extraction
for piezoelectric energy harvesting," Smart Mater. Struct., vol. 20, no. 8,
pp. 085022, 2011.
[66] J. Sankman and D. Ma, "A 12-w to 1.1-mw aim piezoelectric energy
harvester for time-varying vibrations with 450-na," IEEE Trans. Power
Electron., vol. 30, no. 2, pp. 632-643, 2015.
[67] G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, "Adaptive piezoelectric energy harvesting circuit for wireless remote power
supply," IEEE Trans. Power Electron., vol. 17, no. 5, pp. 669-676, 2002.
[68] G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, "Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode," IEEE Trans. Power Electron., vol. 18, no. 2,
pp. 696-703, 2003.
[69] D. Guyomar and M. Lallart, "Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces
and issues in small scale implementation," Micromachines, vol. 2, no.
2, pp. 274-294, 2011.
[70] G. D. Szarka, B. H. Stark, and S. G. Burrow, "Review of power conditioning for kinetic energy harvesting systems," IEEE Trans. Power Electron., vol. 27, no. 2, pp. 803-815, 2012.

Ieee cIRcuITs anD sysTems magazIne

47



Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q3 2018

Contents
IEEE Circuits and Systems Magazine - Q3 2018 - Cover1
IEEE Circuits and Systems Magazine - Q3 2018 - Cover2
IEEE Circuits and Systems Magazine - Q3 2018 - Contents
IEEE Circuits and Systems Magazine - Q3 2018 - 2
IEEE Circuits and Systems Magazine - Q3 2018 - 3
IEEE Circuits and Systems Magazine - Q3 2018 - 4
IEEE Circuits and Systems Magazine - Q3 2018 - 5
IEEE Circuits and Systems Magazine - Q3 2018 - 6
IEEE Circuits and Systems Magazine - Q3 2018 - 7
IEEE Circuits and Systems Magazine - Q3 2018 - 8
IEEE Circuits and Systems Magazine - Q3 2018 - 9
IEEE Circuits and Systems Magazine - Q3 2018 - 10
IEEE Circuits and Systems Magazine - Q3 2018 - 11
IEEE Circuits and Systems Magazine - Q3 2018 - 12
IEEE Circuits and Systems Magazine - Q3 2018 - 13
IEEE Circuits and Systems Magazine - Q3 2018 - 14
IEEE Circuits and Systems Magazine - Q3 2018 - 15
IEEE Circuits and Systems Magazine - Q3 2018 - 16
IEEE Circuits and Systems Magazine - Q3 2018 - 17
IEEE Circuits and Systems Magazine - Q3 2018 - 18
IEEE Circuits and Systems Magazine - Q3 2018 - 19
IEEE Circuits and Systems Magazine - Q3 2018 - 20
IEEE Circuits and Systems Magazine - Q3 2018 - 21
IEEE Circuits and Systems Magazine - Q3 2018 - 22
IEEE Circuits and Systems Magazine - Q3 2018 - 23
IEEE Circuits and Systems Magazine - Q3 2018 - 24
IEEE Circuits and Systems Magazine - Q3 2018 - 25
IEEE Circuits and Systems Magazine - Q3 2018 - 26
IEEE Circuits and Systems Magazine - Q3 2018 - 27
IEEE Circuits and Systems Magazine - Q3 2018 - 28
IEEE Circuits and Systems Magazine - Q3 2018 - 29
IEEE Circuits and Systems Magazine - Q3 2018 - 30
IEEE Circuits and Systems Magazine - Q3 2018 - 31
IEEE Circuits and Systems Magazine - Q3 2018 - 32
IEEE Circuits and Systems Magazine - Q3 2018 - 33
IEEE Circuits and Systems Magazine - Q3 2018 - 34
IEEE Circuits and Systems Magazine - Q3 2018 - 35
IEEE Circuits and Systems Magazine - Q3 2018 - 36
IEEE Circuits and Systems Magazine - Q3 2018 - 37
IEEE Circuits and Systems Magazine - Q3 2018 - 38
IEEE Circuits and Systems Magazine - Q3 2018 - 39
IEEE Circuits and Systems Magazine - Q3 2018 - 40
IEEE Circuits and Systems Magazine - Q3 2018 - 41
IEEE Circuits and Systems Magazine - Q3 2018 - 42
IEEE Circuits and Systems Magazine - Q3 2018 - 43
IEEE Circuits and Systems Magazine - Q3 2018 - 44
IEEE Circuits and Systems Magazine - Q3 2018 - 45
IEEE Circuits and Systems Magazine - Q3 2018 - 46
IEEE Circuits and Systems Magazine - Q3 2018 - 47
IEEE Circuits and Systems Magazine - Q3 2018 - 48
IEEE Circuits and Systems Magazine - Q3 2018 - Cover3
IEEE Circuits and Systems Magazine - Q3 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com