IEEE Electrification Magazine - December 2013 - 23

Wind Turbines

Natural
Gas Generation

Substation
Grid
Switch

ESS

Fuel Cell Energy

ESS

ESS

Solar Panels

Figure 1. A microgrid envisioned for a small town.

requirements in a sustainable, reliable, and secure manner.
this microgrid includes two natural gas generators, one
500-kWh energy-storage element, small wind and solar PV
systems, various loads, and a static switch. Worldwide,
there are several other other experimental microgrid facilities under operation and construction as well.
figure 2 shows the configuration of
the fort sill microgrid, which has a rating of 0.480 kV, 60 Hz, and 630 kW. it is
connected to the utility grid through a
0.48-kV/13.20-kV transformer and a
static switch. the generations in this
microgrid include two natural gas generators rated at 190 kW each, one
30-kW solar PV system, a 2.5-kW wind
turbine, and a 250-kW energy-storage
device. the solar PV and wind turbine
generators are connected to the system
through inverters operating in a current mode while the energy storage
inverter operates in a voltage mode.
the system also includes various
motor loads and variable loads. the motor loads mainly
include chillers, water pumps, and air compressors.
the microgrid concept has already been applied at the
community level to provide benefits to customers. the first

microgrid in the Netherlands was built in bronsbergen
Holiday Park, Zutphen, mainly to improve power quality.
the microgrid consists of solar PV systems on 108 houses,
with a peak total generation of 315 kW and a peak load of
150 kW. two battery storage systems with inverters and a
grid tie switch have been added to convert the existing system to a microgrid. an aerial photo of
the park and the configuration of the
microgrid are shown in figure 3. the
configuration is mesh type and centrally controlled.

The inverter plays
a critical role to
regulate voltage
and frequency and
mange transitions
to island and
grid-tie modes.

Needs for eSSs in microgrids

it is well known that within an envisioned microgrid, various types of
dg and customers create and
demand varying active and reactive
power profiles that may challenge
the stability of the system. the esss,
therefore, play a critical role in stabilizing the voltage and frequency of
the microgrid for both short- and
long-term applications. from the device to system level,
the ess is a crucial element in the integration of dg into
the microgrid. researchers have employed various types
of energy storage at the turbine and farm levels for wind
	

IEEE Electrific ation Magazine / d ec em be r 2 0 1 3

23



Table of Contents for the Digital Edition of IEEE Electrification Magazine - December 2013

IEEE Electrification Magazine - December 2013 - Cover1
IEEE Electrification Magazine - December 2013 - Cover2
IEEE Electrification Magazine - December 2013 - 1
IEEE Electrification Magazine - December 2013 - 2
IEEE Electrification Magazine - December 2013 - 3
IEEE Electrification Magazine - December 2013 - 4
IEEE Electrification Magazine - December 2013 - 5
IEEE Electrification Magazine - December 2013 - 6
IEEE Electrification Magazine - December 2013 - 7
IEEE Electrification Magazine - December 2013 - 8
IEEE Electrification Magazine - December 2013 - 9
IEEE Electrification Magazine - December 2013 - 10
IEEE Electrification Magazine - December 2013 - 11
IEEE Electrification Magazine - December 2013 - 12
IEEE Electrification Magazine - December 2013 - 13
IEEE Electrification Magazine - December 2013 - 14
IEEE Electrification Magazine - December 2013 - 15
IEEE Electrification Magazine - December 2013 - 16
IEEE Electrification Magazine - December 2013 - 17
IEEE Electrification Magazine - December 2013 - 18
IEEE Electrification Magazine - December 2013 - 19
IEEE Electrification Magazine - December 2013 - 20
IEEE Electrification Magazine - December 2013 - 21
IEEE Electrification Magazine - December 2013 - 22
IEEE Electrification Magazine - December 2013 - 23
IEEE Electrification Magazine - December 2013 - 24
IEEE Electrification Magazine - December 2013 - 25
IEEE Electrification Magazine - December 2013 - 26
IEEE Electrification Magazine - December 2013 - 27
IEEE Electrification Magazine - December 2013 - 28
IEEE Electrification Magazine - December 2013 - 29
IEEE Electrification Magazine - December 2013 - 30
IEEE Electrification Magazine - December 2013 - 31
IEEE Electrification Magazine - December 2013 - 32
IEEE Electrification Magazine - December 2013 - 33
IEEE Electrification Magazine - December 2013 - 34
IEEE Electrification Magazine - December 2013 - 35
IEEE Electrification Magazine - December 2013 - 36
IEEE Electrification Magazine - December 2013 - 37
IEEE Electrification Magazine - December 2013 - 38
IEEE Electrification Magazine - December 2013 - 39
IEEE Electrification Magazine - December 2013 - 40
IEEE Electrification Magazine - December 2013 - 41
IEEE Electrification Magazine - December 2013 - 42
IEEE Electrification Magazine - December 2013 - 43
IEEE Electrification Magazine - December 2013 - 44
IEEE Electrification Magazine - December 2013 - 45
IEEE Electrification Magazine - December 2013 - 46
IEEE Electrification Magazine - December 2013 - 47
IEEE Electrification Magazine - December 2013 - 48
IEEE Electrification Magazine - December 2013 - 49
IEEE Electrification Magazine - December 2013 - 50
IEEE Electrification Magazine - December 2013 - 51
IEEE Electrification Magazine - December 2013 - 52
IEEE Electrification Magazine - December 2013 - 53
IEEE Electrification Magazine - December 2013 - 54
IEEE Electrification Magazine - December 2013 - 55
IEEE Electrification Magazine - December 2013 - 56
IEEE Electrification Magazine - December 2013 - 57
IEEE Electrification Magazine - December 2013 - 58
IEEE Electrification Magazine - December 2013 - 59
IEEE Electrification Magazine - December 2013 - 60
IEEE Electrification Magazine - December 2013 - 61
IEEE Electrification Magazine - December 2013 - 62
IEEE Electrification Magazine - December 2013 - 63
IEEE Electrification Magazine - December 2013 - 64
IEEE Electrification Magazine - December 2013 - 65
IEEE Electrification Magazine - December 2013 - 66
IEEE Electrification Magazine - December 2013 - 67
IEEE Electrification Magazine - December 2013 - 68
IEEE Electrification Magazine - December 2013 - 69
IEEE Electrification Magazine - December 2013 - 70
IEEE Electrification Magazine - December 2013 - 71
IEEE Electrification Magazine - December 2013 - 72
IEEE Electrification Magazine - December 2013 - 73
IEEE Electrification Magazine - December 2013 - 74
IEEE Electrification Magazine - December 2013 - 75
IEEE Electrification Magazine - December 2013 - 76
IEEE Electrification Magazine - December 2013 - 77
IEEE Electrification Magazine - December 2013 - 78
IEEE Electrification Magazine - December 2013 - 79
IEEE Electrification Magazine - December 2013 - 80
IEEE Electrification Magazine - December 2013 - Cover3
IEEE Electrification Magazine - December 2013 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com