IEEE Electrification Magazine - December 2016 - 25

Dispatch During Normal Conditions

Dispatch During Contingency Conditions

Response (MW)

Frequency
Regulation
Regulating
Reserve

Load/Generation
Following

Spinning Reserves

Nonspinning Reserves

Supplemental Reserves

0 s 4 s 10 s

1 min

Autonomous
Controls

5 min

10 min

30 min

Automated
Controls

Centralized Dispatch

Figure 2. The conventional and emerging bulk power grid services. (Source: NERC, U.S. Department of Energy.)

The grid services
at the distribution
level are not yet
standardized or as
well-defined as
their bulk power
counterparts.

1 min

Independent System Operator) are
offering new means of providing
these services at market-based
rates. All of these services can be
provided by both conventional generation sources and demand-side
assets. The usual method to provide
bulk power grid services from
demand-side assets is through their
aggregation into so-called virtual
power plants (VPPs), as schematically shown in Figure 3.

5 min

10 min

30 min

1h

Day
Ahead

DR
Programs

∑

Contracts

Dispatch

Resources/VPPs

Aggregation

make them part of the solution
instead of contributing problem factors. Demand-side assets, including
microgrids and building energy management systems, can provide the grid
services needed at the bulk power levels, as well as services needed for distribution system operation. The
distributed assets can provide the bulk
power grid with well-established ancillary services (regulation and frequency
response, spinning reserves, nonspinning/supplemental reserves), defined
by the Federal Energy Regulatory Commission (FERC) Orders 888 (April 1996) and 2000 (December 1999). New bulk power grid services, such as load
following, ramping, and primary frequency response
(PFR) not initially provided for in FERC Orders 888 and
2000 have emerged in recent years to mitigate the bulk
power operational impacts of variable generation. These
are schematically shown in Figure 2.
The Conventional Regulation and Frequency Response
Service was bifurcated into two services (regulation as one
service and PFR as another) by North American Electric
Reliability Corporation (NERC) and FERC Order 794 (January 2014). Furthermore, FERC Order 819 (November 2015)
provided for market-based trading of the new PFR service.
Load following and ramping are not formally defined as
tradable products by FERC, but some markets (e.g., Midcontinent Independent System Operator and California

Figure 3. The bulk power grid services provided from buildings and
other demand-side assets.
IEEE Electrific ation Magazine / d ec em be r 2 0 1 6

25



Table of Contents for the Digital Edition of IEEE Electrification Magazine - December 2016

IEEE Electrification Magazine - December 2016 - Cover1
IEEE Electrification Magazine - December 2016 - Cover2
IEEE Electrification Magazine - December 2016 - 1
IEEE Electrification Magazine - December 2016 - 2
IEEE Electrification Magazine - December 2016 - 3
IEEE Electrification Magazine - December 2016 - 4
IEEE Electrification Magazine - December 2016 - 5
IEEE Electrification Magazine - December 2016 - 6
IEEE Electrification Magazine - December 2016 - 7
IEEE Electrification Magazine - December 2016 - 8
IEEE Electrification Magazine - December 2016 - 9
IEEE Electrification Magazine - December 2016 - 10
IEEE Electrification Magazine - December 2016 - 11
IEEE Electrification Magazine - December 2016 - 12
IEEE Electrification Magazine - December 2016 - 13
IEEE Electrification Magazine - December 2016 - 14
IEEE Electrification Magazine - December 2016 - 15
IEEE Electrification Magazine - December 2016 - 16
IEEE Electrification Magazine - December 2016 - 17
IEEE Electrification Magazine - December 2016 - 18
IEEE Electrification Magazine - December 2016 - 19
IEEE Electrification Magazine - December 2016 - 20
IEEE Electrification Magazine - December 2016 - 21
IEEE Electrification Magazine - December 2016 - 22
IEEE Electrification Magazine - December 2016 - 23
IEEE Electrification Magazine - December 2016 - 24
IEEE Electrification Magazine - December 2016 - 25
IEEE Electrification Magazine - December 2016 - 26
IEEE Electrification Magazine - December 2016 - 27
IEEE Electrification Magazine - December 2016 - 28
IEEE Electrification Magazine - December 2016 - 29
IEEE Electrification Magazine - December 2016 - 30
IEEE Electrification Magazine - December 2016 - 31
IEEE Electrification Magazine - December 2016 - 32
IEEE Electrification Magazine - December 2016 - 33
IEEE Electrification Magazine - December 2016 - 34
IEEE Electrification Magazine - December 2016 - 35
IEEE Electrification Magazine - December 2016 - 36
IEEE Electrification Magazine - December 2016 - 37
IEEE Electrification Magazine - December 2016 - 38
IEEE Electrification Magazine - December 2016 - 39
IEEE Electrification Magazine - December 2016 - 40
IEEE Electrification Magazine - December 2016 - 41
IEEE Electrification Magazine - December 2016 - 42
IEEE Electrification Magazine - December 2016 - 43
IEEE Electrification Magazine - December 2016 - 44
IEEE Electrification Magazine - December 2016 - 45
IEEE Electrification Magazine - December 2016 - 46
IEEE Electrification Magazine - December 2016 - 47
IEEE Electrification Magazine - December 2016 - 48
IEEE Electrification Magazine - December 2016 - 49
IEEE Electrification Magazine - December 2016 - 50
IEEE Electrification Magazine - December 2016 - 51
IEEE Electrification Magazine - December 2016 - 52
IEEE Electrification Magazine - December 2016 - Cover3
IEEE Electrification Magazine - December 2016 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com