IEEE Power & Energy Magazine - January/February 2016 - 56

these latter include "smart-grid" related technologies, integration of phase-angle measurements into electric grid operations,
additional market products like distributed resources, analysis
methodologies for solar generation forecasting, and management techniques for operating energy storage devices.
with the broad scope of these challenges and the need to
integrate grid operations systems and align them on a common modeling syntax for the electric power grid, ercot
elected to pursue a design based on the iec tc57 ciM.
ercot's approach leverages and extends the ciM. the
result can be seen in Figure 5.
✔ the NMMs repository of master network data is
based on the ciM information model.
✔ input to NMMs from member tsos, generators, and
other sources is standardized on the ciM. Most of this
information comes in the form of incremental updates
of network models.
✔ output of network models from NMMs to ercot
and member business systems is standardized on the
ciM. this establishes consistency of representation

Modeling Authorities' Individual
Grid Models Are Expressed as
CIM EQ Models for a Business
Day and SSH Instances for
Every Reference Point in Time

Quality
Assurance
Gate

Years-Ahead Individual Grid
Models

throughout these business systems, which reduces the
potential for conflicting results and enables straightforward sharing of information among these systems.
the use of the ciM, as both a master data repository and
data exchange standard, provides NMMs a flexible design
that allows for the rapid operational integration of new
devices as necessary to support grid operations. the ciM
not only allows for the extension of its schema (data structure
definitions) but also provides a set of interoperational data
exchange standards that the data adaptors/consumers adhere
to (these allow for the easy migration of data into target
systems). this reduces organizational adoption time, produces a level of modeling consistency and accuracy that the
prevalent industry practices are incapable of, and in general
leads to greater operational awareness of grid conditions and,
therefore, greater reliability of the overall power grid system.

ENTSO-E and CIM for Network Analysis
historically, system operations for all tsos in europe relied primarily on bilateral contracts between adjacent tsos. based on

Solved Base Case
(CGM), Expressed in
CIM TP and SV
Instance for the Target
Time Stamp
What-if Analysis (Contingency Analysis/
Assessment of the Effectiveness of
Remedial Actions)

Year-Ahead Individual
Grid Models

Month-Ahead Individual Grid
Models

Interchange Transaction
Scheduling
(BCC Algorithm)

Network Sensitivity Analysis (Defining Critical
Network Element/Calculating PTDF)

Week-Ahead Individual Grid
Models
Response to a Disturbance in the Time
Domain (Dynamic Stability Analysis)

Pre-Market Closure Day-Ahead
Individual Grid Models

Post-Market Closure Day-Ahead
Individual Grid Models

CGM Methodology
(European Merging Function)

Impact of Planned Outages

Intraday Individual Grid Models
Short-Term Adequacy
Real-Time Snapshot Data

figure 6. The context for the ENTSO-E CGM.
56

ieee power & energy magazine

january/february 2016



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - January/February 2016

IEEE Power & Energy Magazine - January/February 2016 - Cover1
IEEE Power & Energy Magazine - January/February 2016 - Cover2
IEEE Power & Energy Magazine - January/February 2016 - 1
IEEE Power & Energy Magazine - January/February 2016 - 2
IEEE Power & Energy Magazine - January/February 2016 - 3
IEEE Power & Energy Magazine - January/February 2016 - 4
IEEE Power & Energy Magazine - January/February 2016 - 5
IEEE Power & Energy Magazine - January/February 2016 - 6
IEEE Power & Energy Magazine - January/February 2016 - 7
IEEE Power & Energy Magazine - January/February 2016 - 8
IEEE Power & Energy Magazine - January/February 2016 - 9
IEEE Power & Energy Magazine - January/February 2016 - 10
IEEE Power & Energy Magazine - January/February 2016 - 11
IEEE Power & Energy Magazine - January/February 2016 - 12
IEEE Power & Energy Magazine - January/February 2016 - 13
IEEE Power & Energy Magazine - January/February 2016 - 14
IEEE Power & Energy Magazine - January/February 2016 - 15
IEEE Power & Energy Magazine - January/February 2016 - 16
IEEE Power & Energy Magazine - January/February 2016 - 17
IEEE Power & Energy Magazine - January/February 2016 - 18
IEEE Power & Energy Magazine - January/February 2016 - 19
IEEE Power & Energy Magazine - January/February 2016 - 20
IEEE Power & Energy Magazine - January/February 2016 - 21
IEEE Power & Energy Magazine - January/February 2016 - 22
IEEE Power & Energy Magazine - January/February 2016 - 23
IEEE Power & Energy Magazine - January/February 2016 - 24
IEEE Power & Energy Magazine - January/February 2016 - 25
IEEE Power & Energy Magazine - January/February 2016 - 26
IEEE Power & Energy Magazine - January/February 2016 - 27
IEEE Power & Energy Magazine - January/February 2016 - 28
IEEE Power & Energy Magazine - January/February 2016 - 29
IEEE Power & Energy Magazine - January/February 2016 - 30
IEEE Power & Energy Magazine - January/February 2016 - 31
IEEE Power & Energy Magazine - January/February 2016 - 32
IEEE Power & Energy Magazine - January/February 2016 - 33
IEEE Power & Energy Magazine - January/February 2016 - 34
IEEE Power & Energy Magazine - January/February 2016 - 35
IEEE Power & Energy Magazine - January/February 2016 - 36
IEEE Power & Energy Magazine - January/February 2016 - 37
IEEE Power & Energy Magazine - January/February 2016 - 38
IEEE Power & Energy Magazine - January/February 2016 - 39
IEEE Power & Energy Magazine - January/February 2016 - 40
IEEE Power & Energy Magazine - January/February 2016 - 41
IEEE Power & Energy Magazine - January/February 2016 - 42
IEEE Power & Energy Magazine - January/February 2016 - 43
IEEE Power & Energy Magazine - January/February 2016 - 44
IEEE Power & Energy Magazine - January/February 2016 - 45
IEEE Power & Energy Magazine - January/February 2016 - 46
IEEE Power & Energy Magazine - January/February 2016 - 47
IEEE Power & Energy Magazine - January/February 2016 - 48
IEEE Power & Energy Magazine - January/February 2016 - 49
IEEE Power & Energy Magazine - January/February 2016 - 50
IEEE Power & Energy Magazine - January/February 2016 - 51
IEEE Power & Energy Magazine - January/February 2016 - 52
IEEE Power & Energy Magazine - January/February 2016 - 53
IEEE Power & Energy Magazine - January/February 2016 - 54
IEEE Power & Energy Magazine - January/February 2016 - 55
IEEE Power & Energy Magazine - January/February 2016 - 56
IEEE Power & Energy Magazine - January/February 2016 - 57
IEEE Power & Energy Magazine - January/February 2016 - 58
IEEE Power & Energy Magazine - January/February 2016 - 59
IEEE Power & Energy Magazine - January/February 2016 - 60
IEEE Power & Energy Magazine - January/February 2016 - 61
IEEE Power & Energy Magazine - January/February 2016 - 62
IEEE Power & Energy Magazine - January/February 2016 - 63
IEEE Power & Energy Magazine - January/February 2016 - 64
IEEE Power & Energy Magazine - January/February 2016 - 65
IEEE Power & Energy Magazine - January/February 2016 - 66
IEEE Power & Energy Magazine - January/February 2016 - 67
IEEE Power & Energy Magazine - January/February 2016 - 68
IEEE Power & Energy Magazine - January/February 2016 - 69
IEEE Power & Energy Magazine - January/February 2016 - 70
IEEE Power & Energy Magazine - January/February 2016 - 71
IEEE Power & Energy Magazine - January/February 2016 - 72
IEEE Power & Energy Magazine - January/February 2016 - 73
IEEE Power & Energy Magazine - January/February 2016 - 74
IEEE Power & Energy Magazine - January/February 2016 - 75
IEEE Power & Energy Magazine - January/February 2016 - 76
IEEE Power & Energy Magazine - January/February 2016 - 77
IEEE Power & Energy Magazine - January/February 2016 - 78
IEEE Power & Energy Magazine - January/February 2016 - 79
IEEE Power & Energy Magazine - January/February 2016 - 80
IEEE Power & Energy Magazine - January/February 2016 - 81
IEEE Power & Energy Magazine - January/February 2016 - 82
IEEE Power & Energy Magazine - January/February 2016 - 83
IEEE Power & Energy Magazine - January/February 2016 - 84
IEEE Power & Energy Magazine - January/February 2016 - 85
IEEE Power & Energy Magazine - January/February 2016 - 86
IEEE Power & Energy Magazine - January/February 2016 - 87
IEEE Power & Energy Magazine - January/February 2016 - 88
IEEE Power & Energy Magazine - January/February 2016 - 89
IEEE Power & Energy Magazine - January/February 2016 - 90
IEEE Power & Energy Magazine - January/February 2016 - 91
IEEE Power & Energy Magazine - January/February 2016 - 92
IEEE Power & Energy Magazine - January/February 2016 - 93
IEEE Power & Energy Magazine - January/February 2016 - 94
IEEE Power & Energy Magazine - January/February 2016 - 95
IEEE Power & Energy Magazine - January/February 2016 - 96
IEEE Power & Energy Magazine - January/February 2016 - 97
IEEE Power & Energy Magazine - January/February 2016 - 98
IEEE Power & Energy Magazine - January/February 2016 - 99
IEEE Power & Energy Magazine - January/February 2016 - 100
IEEE Power & Energy Magazine - January/February 2016 - 101
IEEE Power & Energy Magazine - January/February 2016 - 102
IEEE Power & Energy Magazine - January/February 2016 - 103
IEEE Power & Energy Magazine - January/February 2016 - 104
IEEE Power & Energy Magazine - January/February 2016 - 105
IEEE Power & Energy Magazine - January/February 2016 - 106
IEEE Power & Energy Magazine - January/February 2016 - 107
IEEE Power & Energy Magazine - January/February 2016 - 108
IEEE Power & Energy Magazine - January/February 2016 - 109
IEEE Power & Energy Magazine - January/February 2016 - 110
IEEE Power & Energy Magazine - January/February 2016 - 111
IEEE Power & Energy Magazine - January/February 2016 - 112
IEEE Power & Energy Magazine - January/February 2016 - 113
IEEE Power & Energy Magazine - January/February 2016 - 114
IEEE Power & Energy Magazine - January/February 2016 - 115
IEEE Power & Energy Magazine - January/February 2016 - 116
IEEE Power & Energy Magazine - January/February 2016 - 117
IEEE Power & Energy Magazine - January/February 2016 - 118
IEEE Power & Energy Magazine - January/February 2016 - 119
IEEE Power & Energy Magazine - January/February 2016 - 120
IEEE Power & Energy Magazine - January/February 2016 - 121
IEEE Power & Energy Magazine - January/February 2016 - 122
IEEE Power & Energy Magazine - January/February 2016 - 123
IEEE Power & Energy Magazine - January/February 2016 - 124
IEEE Power & Energy Magazine - January/February 2016 - 125
IEEE Power & Energy Magazine - January/February 2016 - 126
IEEE Power & Energy Magazine - January/February 2016 - 127
IEEE Power & Energy Magazine - January/February 2016 - 128
IEEE Power & Energy Magazine - January/February 2016 - Cover3
IEEE Power & Energy Magazine - January/February 2016 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com