IEEE Power & Energy Magazine - January/February 2017 - 74

The magnitude of the dc in the control winding was, in turn, controlled by
means of a relatively small resistance dimmer operated by a lever on the board.
Of course, this rheostat did introduce
some energy loss but far less than
would be the case if resistance dimmers
were used to control the lamps directly.

Visit us at DistribuTECH,
Booth #1024

These levers, by the way, were capable
of being interconnected mechanically
to provide a crude form of mastering. However, the interconnection of
a large number of levers introduced a
fair amount of mechanical friction to be
overcome. It was not possible to provide
a long enough master lever to give an

"It Fits"

FULLY IEEE 1656 COMPLIANT

NO
GAPS
NO
ZAPS
www.greenjacketinc.com

74

When a single contact can bring down your
substation, installing precise fit cover-up is
the best choice for mitigating your risk.
It's a proven fact that cover-up works. Our
precise fit covers are made to order based
on the exacting dimensions of the underlying
equipment - it is the best product for
eliminating gaps. And, Greenjacket is fully
compliant with the IEEE 1656 Guide test
parameters. Selecting Greenjacket ensures
you have the only precise fit and most effective
protection available.
When outage risks can have significant
consequential damages for any utility or end
use customer, having the best protection is
your best choice.

1.866.464.7996

ieee power & energy magazine

operator sufficient mechanical advantage to accomplish this. Therefore, a
large wheel (seen at the center of the
board in FigureĀ 1) was provided for this
purpose. The wheel was geared to the
shafts inside the board that moved the
levers, so it provided the necessary mechanical advantage.
The operation of this wheel did not
allow for extremely rapid cues. The fastest cue possible was about 15 s, which
corresponded to about 30 revolutions
of the wheel. Extremely rapid cues (for
dramatic effect) had to be made by using
the control switches associated with each
dimmer. These, in turn, switched the main
lamp circuits by means of remote contactors, and the switches themselves could
be connected to each other electrically to
provide a mastering function. The wheel,
however, was very useful for extremely
slow cues, such as sunrises or sunsets,
taking place over many minutes. Thus, it
was called the slow-motion wheel.
The Roxy Theatre was huge, with
nearly 6,000 seats, so its stage was correspondingly large and required a lot
of lighting to cover it. The total electrical load planned for the entire building
was 2,500 kW, with 780 kW allocated
for stage lighting via the Hub board.
a total of 23 watthour meters were
required for the various areas of the
building because different rates were applied to various uses (such as motors and
lights). However, another reason for such
a large number of meters was that it was
extremely difficult to calibrate watthour
meters designed for currents in excess of
800 a (the total current corresponding
to the anticipated load would have been
about 20,000 a at 120 V). Presumably,
such calibration at that time required the
inclusion of the current transformer or
shunt to be used with the meter.
The building had a total of four electric services, two for ac and two for
dc. UEL&P supplied the ac services at
208Y/120 V, three phase, and the New
York Edison Company supplied the dc
services at 120/240 V, three wire. The
main reasons for multiple services were
the high connected load and the need
for two different types of current. However, there also were requirements at
january/february 2017


http://www.greenjacketinc.com

Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - January/February 2017

IEEE Power & Energy Magazine - January/February 2017 - Cover1
IEEE Power & Energy Magazine - January/February 2017 - Cover2
IEEE Power & Energy Magazine - January/February 2017 - 1
IEEE Power & Energy Magazine - January/February 2017 - 2
IEEE Power & Energy Magazine - January/February 2017 - 3
IEEE Power & Energy Magazine - January/February 2017 - 4
IEEE Power & Energy Magazine - January/February 2017 - 5
IEEE Power & Energy Magazine - January/February 2017 - 6
IEEE Power & Energy Magazine - January/February 2017 - 7
IEEE Power & Energy Magazine - January/February 2017 - 8
IEEE Power & Energy Magazine - January/February 2017 - 9
IEEE Power & Energy Magazine - January/February 2017 - 10
IEEE Power & Energy Magazine - January/February 2017 - 11
IEEE Power & Energy Magazine - January/February 2017 - 12
IEEE Power & Energy Magazine - January/February 2017 - 13
IEEE Power & Energy Magazine - January/February 2017 - 14
IEEE Power & Energy Magazine - January/February 2017 - 15
IEEE Power & Energy Magazine - January/February 2017 - 16
IEEE Power & Energy Magazine - January/February 2017 - 17
IEEE Power & Energy Magazine - January/February 2017 - 18
IEEE Power & Energy Magazine - January/February 2017 - 19
IEEE Power & Energy Magazine - January/February 2017 - 20
IEEE Power & Energy Magazine - January/February 2017 - 21
IEEE Power & Energy Magazine - January/February 2017 - 22
IEEE Power & Energy Magazine - January/February 2017 - 23
IEEE Power & Energy Magazine - January/February 2017 - 24
IEEE Power & Energy Magazine - January/February 2017 - 25
IEEE Power & Energy Magazine - January/February 2017 - 26
IEEE Power & Energy Magazine - January/February 2017 - 27
IEEE Power & Energy Magazine - January/February 2017 - 28
IEEE Power & Energy Magazine - January/February 2017 - 29
IEEE Power & Energy Magazine - January/February 2017 - 30
IEEE Power & Energy Magazine - January/February 2017 - 31
IEEE Power & Energy Magazine - January/February 2017 - 32
IEEE Power & Energy Magazine - January/February 2017 - 33
IEEE Power & Energy Magazine - January/February 2017 - 34
IEEE Power & Energy Magazine - January/February 2017 - 35
IEEE Power & Energy Magazine - January/February 2017 - 36
IEEE Power & Energy Magazine - January/February 2017 - 37
IEEE Power & Energy Magazine - January/February 2017 - 38
IEEE Power & Energy Magazine - January/February 2017 - 39
IEEE Power & Energy Magazine - January/February 2017 - 40
IEEE Power & Energy Magazine - January/February 2017 - 41
IEEE Power & Energy Magazine - January/February 2017 - 42
IEEE Power & Energy Magazine - January/February 2017 - 43
IEEE Power & Energy Magazine - January/February 2017 - 44
IEEE Power & Energy Magazine - January/February 2017 - 45
IEEE Power & Energy Magazine - January/February 2017 - 46
IEEE Power & Energy Magazine - January/February 2017 - 47
IEEE Power & Energy Magazine - January/February 2017 - 48
IEEE Power & Energy Magazine - January/February 2017 - 49
IEEE Power & Energy Magazine - January/February 2017 - 50
IEEE Power & Energy Magazine - January/February 2017 - 51
IEEE Power & Energy Magazine - January/February 2017 - 52
IEEE Power & Energy Magazine - January/February 2017 - 53
IEEE Power & Energy Magazine - January/February 2017 - 54
IEEE Power & Energy Magazine - January/February 2017 - 55
IEEE Power & Energy Magazine - January/February 2017 - 56
IEEE Power & Energy Magazine - January/February 2017 - 57
IEEE Power & Energy Magazine - January/February 2017 - 58
IEEE Power & Energy Magazine - January/February 2017 - 59
IEEE Power & Energy Magazine - January/February 2017 - 60
IEEE Power & Energy Magazine - January/February 2017 - 61
IEEE Power & Energy Magazine - January/February 2017 - 62
IEEE Power & Energy Magazine - January/February 2017 - 63
IEEE Power & Energy Magazine - January/February 2017 - 64
IEEE Power & Energy Magazine - January/February 2017 - 65
IEEE Power & Energy Magazine - January/February 2017 - 66
IEEE Power & Energy Magazine - January/February 2017 - 67
IEEE Power & Energy Magazine - January/February 2017 - 68
IEEE Power & Energy Magazine - January/February 2017 - 69
IEEE Power & Energy Magazine - January/February 2017 - 70
IEEE Power & Energy Magazine - January/February 2017 - 71
IEEE Power & Energy Magazine - January/February 2017 - 72
IEEE Power & Energy Magazine - January/February 2017 - 73
IEEE Power & Energy Magazine - January/February 2017 - 74
IEEE Power & Energy Magazine - January/February 2017 - 75
IEEE Power & Energy Magazine - January/February 2017 - 76
IEEE Power & Energy Magazine - January/February 2017 - 77
IEEE Power & Energy Magazine - January/February 2017 - 78
IEEE Power & Energy Magazine - January/February 2017 - 79
IEEE Power & Energy Magazine - January/February 2017 - 80
IEEE Power & Energy Magazine - January/February 2017 - 81
IEEE Power & Energy Magazine - January/February 2017 - 82
IEEE Power & Energy Magazine - January/February 2017 - 83
IEEE Power & Energy Magazine - January/February 2017 - 84
IEEE Power & Energy Magazine - January/February 2017 - 85
IEEE Power & Energy Magazine - January/February 2017 - 86
IEEE Power & Energy Magazine - January/February 2017 - 87
IEEE Power & Energy Magazine - January/February 2017 - 88
IEEE Power & Energy Magazine - January/February 2017 - 89
IEEE Power & Energy Magazine - January/February 2017 - 90
IEEE Power & Energy Magazine - January/February 2017 - 91
IEEE Power & Energy Magazine - January/February 2017 - 92
IEEE Power & Energy Magazine - January/February 2017 - Cover3
IEEE Power & Energy Magazine - January/February 2017 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com