IEEE Power & Energy Magazine - March/April 2014 - 46

than conventional high-voltage ac (hvac) infrastructure
are being deployed more and more at the transmission
level. high-voltage dc (hvdc) lines, already mature for
long-distance and undersea applications, have now been
included in several on- and offshore transmission grid
projects, particularly the voltage source converter (vSc)based hvdc system, which offers greater flexibility of
operation and easier expandability to multiterminal configurations. Phase-shifting transformers (PSts) and flexible ac transmission systems (FactS) devices, thanks to
their ability to offer targeted active and/or reactive power
control, are being deployed to reduce unplanned flows.
new types of conductors, such as gas-insulated lines
(Gils) and high-temperature superconducting (htS)
wires, so far installed mainly in pilot projects, promise
to increase transfer capacities. and a host of information
and communication technology (ict) solutions are being
adopted to increase the adequacy and robustness of the
system, augmenting its monitoring capabilities and controllability (e.g., wide-area monitoring and control systems that let operators optimize the power flows across
very large systems thanks to satellite-based measurements
and dynamic thermal power-rating techniques that take
advantage of low temperatures to temporarily overload
conductors without the risks of mechanical and thermal
stress). it should be noted that in a highly meshed network
like the european one, if intelligent control devices are
extensively deployed they will deliver real benefits only
when subjected to coordinated operation; since these
technologies mutually influence each other, if sophisticated coordination and investment-sharing mechanisms
are not put in place, grid operators face the risk that these
devices will not deliver their full potential. they could
even contribute to unwanted system behaviors.
✔ International expansion and the regulatory framework: there is a tendency in europe (and indeed
worldwide) to plan extensions of the transmission
system beyond continental borders. Several initiatives
focus on interconnecting the power systems along the
shores of the Mediterranean; preliminary feasibility
studies have been conducted to interconnect the european power system with iPS/uPS; and even china has
expressed interest in performing planning studies to
interlink the chinese power grid with europe through
other international power systems. the first list of Pcis
already includes links to non-eu countries. Some of the
main regulatory and market obstacles in advancing this
process are found in the lack of sound financing frameworks and business models, the need to develop support schemes for reS generation in some countries; a
lack of shared and harmonized rules for network access,
capacity allocation, congestion management, and intertSO compensation; and a need for allocation and remuneration mechanisms for the backup reserve and storage
capacity necessary to cope with reS volatility.
46

ieee power & energy magazine

✔ Super transmission grids and smart distribution

grids: in general, tSOs and distribution system operators (dSOs) still have to implement strategies to address
in a systematic way the interfacing issues originating
from smart distribution grid developments. Many of the
renewable-based generating units connected to distribution systems are only able to operate within limited
frequency ranges and can find themselves disconnected
just when they are needed to support system stability. according to entSO-e, "if [they are] simultaneously applied to a large number of units, such unique
frequency thresholds can jeopardize the security of the
entire interconnected system." to make the transmission and distribution grids work together efficiently and
safely, increased coordination in their development and
operation must be pursued. both transmission and distribution need to be further developed, not necessarily
just in terms of carrying capacity but also via advanced
ict infrastructure and communication and control platforms. networks and markets must adapt to the coexistence of centralized and decentralized power generation.
entSO-e warns that "the more active role of the networks themselves, as well as the expected more active
participation of loads and generation embedded in the
distribution systems, will impact on the forecast of the
load as well as, in the long run, the design of the market models." Several stakeholders (including regulators,
system operators, and power producers) are calling for
closer coordination between transmission and distribution systems, especially for issues concerning demand
and generation observability but also for interoperability and controllability, so as to ensure a suitable contribution of local resources to global system security.

A Possible Future Pan-European
Transmission Network
the main transmission grid projects agreed to by network
stakeholders and supported by eu legislative and financial
instruments can be grouped into four clusters:
1) north Sea offshore grid
2) Southwestern europe and the Mediterranean area
3) central and southeastern europe
4) baltic energy Market interconnection Plan.
the ongoing and planned activities in these four extended
areas are described below.

North Sea Offshore Grid
the north Seas countries Offshore Grid initiative (nScOGi)
was launched in 2009 by ten nations (belgium, denmark,
France, Germany, ireland, luxembourg, netherlands, norway, Sweden, and the united Kingdom). the underlying
objective of the initiative is the exploitation of the huge wind
power potential of the north Sea via an offshore transmission network connected to the mainland grid. according to
nScOGi scenarios, the countries belonging to the initiative
march/april 2014



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - March/April 2014

IEEE Power & Energy Magazine - March/April 2014 - Cover1
IEEE Power & Energy Magazine - March/April 2014 - Cover2
IEEE Power & Energy Magazine - March/April 2014 - 1
IEEE Power & Energy Magazine - March/April 2014 - 2
IEEE Power & Energy Magazine - March/April 2014 - 3
IEEE Power & Energy Magazine - March/April 2014 - 4
IEEE Power & Energy Magazine - March/April 2014 - 5
IEEE Power & Energy Magazine - March/April 2014 - 6
IEEE Power & Energy Magazine - March/April 2014 - 7
IEEE Power & Energy Magazine - March/April 2014 - 8
IEEE Power & Energy Magazine - March/April 2014 - 9
IEEE Power & Energy Magazine - March/April 2014 - 10
IEEE Power & Energy Magazine - March/April 2014 - 11
IEEE Power & Energy Magazine - March/April 2014 - 12
IEEE Power & Energy Magazine - March/April 2014 - 13
IEEE Power & Energy Magazine - March/April 2014 - 14
IEEE Power & Energy Magazine - March/April 2014 - 15
IEEE Power & Energy Magazine - March/April 2014 - 16
IEEE Power & Energy Magazine - March/April 2014 - 17
IEEE Power & Energy Magazine - March/April 2014 - 18
IEEE Power & Energy Magazine - March/April 2014 - 19
IEEE Power & Energy Magazine - March/April 2014 - 20
IEEE Power & Energy Magazine - March/April 2014 - 21
IEEE Power & Energy Magazine - March/April 2014 - 22
IEEE Power & Energy Magazine - March/April 2014 - 23
IEEE Power & Energy Magazine - March/April 2014 - 24
IEEE Power & Energy Magazine - March/April 2014 - 25
IEEE Power & Energy Magazine - March/April 2014 - 26
IEEE Power & Energy Magazine - March/April 2014 - 27
IEEE Power & Energy Magazine - March/April 2014 - 28
IEEE Power & Energy Magazine - March/April 2014 - 29
IEEE Power & Energy Magazine - March/April 2014 - 30
IEEE Power & Energy Magazine - March/April 2014 - 31
IEEE Power & Energy Magazine - March/April 2014 - 32
IEEE Power & Energy Magazine - March/April 2014 - 33
IEEE Power & Energy Magazine - March/April 2014 - 34
IEEE Power & Energy Magazine - March/April 2014 - 35
IEEE Power & Energy Magazine - March/April 2014 - 36
IEEE Power & Energy Magazine - March/April 2014 - 37
IEEE Power & Energy Magazine - March/April 2014 - 38
IEEE Power & Energy Magazine - March/April 2014 - 39
IEEE Power & Energy Magazine - March/April 2014 - 40
IEEE Power & Energy Magazine - March/April 2014 - 41
IEEE Power & Energy Magazine - March/April 2014 - 42
IEEE Power & Energy Magazine - March/April 2014 - 43
IEEE Power & Energy Magazine - March/April 2014 - 44
IEEE Power & Energy Magazine - March/April 2014 - 45
IEEE Power & Energy Magazine - March/April 2014 - 46
IEEE Power & Energy Magazine - March/April 2014 - 47
IEEE Power & Energy Magazine - March/April 2014 - 48
IEEE Power & Energy Magazine - March/April 2014 - 49
IEEE Power & Energy Magazine - March/April 2014 - 50
IEEE Power & Energy Magazine - March/April 2014 - 51
IEEE Power & Energy Magazine - March/April 2014 - 52
IEEE Power & Energy Magazine - March/April 2014 - 53
IEEE Power & Energy Magazine - March/April 2014 - 54
IEEE Power & Energy Magazine - March/April 2014 - 55
IEEE Power & Energy Magazine - March/April 2014 - 56
IEEE Power & Energy Magazine - March/April 2014 - 57
IEEE Power & Energy Magazine - March/April 2014 - 58
IEEE Power & Energy Magazine - March/April 2014 - 59
IEEE Power & Energy Magazine - March/April 2014 - 60
IEEE Power & Energy Magazine - March/April 2014 - 61
IEEE Power & Energy Magazine - March/April 2014 - 62
IEEE Power & Energy Magazine - March/April 2014 - 63
IEEE Power & Energy Magazine - March/April 2014 - 64
IEEE Power & Energy Magazine - March/April 2014 - 65
IEEE Power & Energy Magazine - March/April 2014 - 66
IEEE Power & Energy Magazine - March/April 2014 - 67
IEEE Power & Energy Magazine - March/April 2014 - 68
IEEE Power & Energy Magazine - March/April 2014 - 69
IEEE Power & Energy Magazine - March/April 2014 - 70
IEEE Power & Energy Magazine - March/April 2014 - 71
IEEE Power & Energy Magazine - March/April 2014 - 72
IEEE Power & Energy Magazine - March/April 2014 - 73
IEEE Power & Energy Magazine - March/April 2014 - 74
IEEE Power & Energy Magazine - March/April 2014 - 75
IEEE Power & Energy Magazine - March/April 2014 - 76
IEEE Power & Energy Magazine - March/April 2014 - 77
IEEE Power & Energy Magazine - March/April 2014 - 78
IEEE Power & Energy Magazine - March/April 2014 - 79
IEEE Power & Energy Magazine - March/April 2014 - 80
IEEE Power & Energy Magazine - March/April 2014 - 81
IEEE Power & Energy Magazine - March/April 2014 - 82
IEEE Power & Energy Magazine - March/April 2014 - 83
IEEE Power & Energy Magazine - March/April 2014 - 84
IEEE Power & Energy Magazine - March/April 2014 - 85
IEEE Power & Energy Magazine - March/April 2014 - 86
IEEE Power & Energy Magazine - March/April 2014 - 87
IEEE Power & Energy Magazine - March/April 2014 - 88
IEEE Power & Energy Magazine - March/April 2014 - 89
IEEE Power & Energy Magazine - March/April 2014 - 90
IEEE Power & Energy Magazine - March/April 2014 - 91
IEEE Power & Energy Magazine - March/April 2014 - 92
IEEE Power & Energy Magazine - March/April 2014 - 93
IEEE Power & Energy Magazine - March/April 2014 - 94
IEEE Power & Energy Magazine - March/April 2014 - 95
IEEE Power & Energy Magazine - March/April 2014 - 96
IEEE Power & Energy Magazine - March/April 2014 - 97
IEEE Power & Energy Magazine - March/April 2014 - 98
IEEE Power & Energy Magazine - March/April 2014 - 99
IEEE Power & Energy Magazine - March/April 2014 - 100
IEEE Power & Energy Magazine - March/April 2014 - 101
IEEE Power & Energy Magazine - March/April 2014 - 102
IEEE Power & Energy Magazine - March/April 2014 - 103
IEEE Power & Energy Magazine - March/April 2014 - 104
IEEE Power & Energy Magazine - March/April 2014 - Cover3
IEEE Power & Energy Magazine - March/April 2014 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com