IEEE Power & Energy Magazine - March/April 2015 - 27

Quantifying the impact of DERs on reliability is a difficult
task even when the DERs are dispatchable. The analysis is
by nature probabilistic because failures have a high degree of
uncertainty. Researchers have come up with various approaches
to probabilistic planning that, for the most part, have not been
embraced by utility planners. Utility distribution planners prefer
more deterministic methods that are based on average failure
rates and assume predictable interactions among circuit components. EPRI's plan has yet to embrace a preferred method.
An overall assessment must consider the incremental
impacts-both positive and negative-that result from DER
additions. The overall assessment must also consider the interrelationship of the benefits and impacts from each of the five categories. Once the full set of assessments have been performed,
the result is a clearer picture of the full range of response that can
be expected on a distribution feeder, one that considers unique
feeder characteristics, constraints, and capabilities as well as the
location-specific impacts of DERs (see Figure 5).
Performing such a thorough analysis can be challenging.
The greatest challenge lies in analyzing all feeders within a
service territory, which is necessary to better quantify the
impacts of DERs across a planning area and/or system and
thus determine the overall costs and benefits that should be
captured in an integration study.

Systemwide Application
In 2010, EPRI began a detailed investigation into the impact
that increasing levels of DERs, specifically PVs, could
have on distribution system performance. Approximately

6 million uniquely different solar deployment cases and
the resulting feeder response outcomes have been analyzed
across 34 feeders throughout North America using the opensource distribution system simulator OpenDSS. A glimpse of
the overall hosting capacities was provided in Figure 3.
From the outset, the goal of performing such a thorough,
detailed analysis was that lessons should be learned and trends
observed to develop better methods and tools. These improved
methods would then let utilities efficiently and confidently
answer such questions as: "What level of PVs is going to affect
my system, and where will these issues occur?"
Throughout 2013 and 2014, EPRI analyzed a vast quantity
of feeder hosting capacity results to identify trends. These
trends form the basis for a streamlined method of determining, on a feeder-by-feeder basis, four important items:
✔✔ the hosting capacities for individual feeders
✔✔ the locations where PVs can be placed without requiring
system upgrades (optimal versus nonoptimal locations)
✔✔ the issues that can arise due to increased levels of PVs
✔✔ mitigation solutions for integrated DERs beyond the
base hosting capacity level.
This streamlined method for evaluating the hosting capacity of individual feeders can also be performed across an
entire distribution system in an automated fashion, as shown
in Figure 6. Efficient implementation also enables qualified
users to evaluate mitigation solutions on a feeder-by-feeder
basis. As the distribution system changes over time, the
assessment method can be repeated as needed to account for
changes to the distribution system, such as reconfigurations

Systemwide Assessment Capturing Feeder-Specific Results
Hosting Capacity Values
Feeder Level

Substation Level

Substation Level

=

Feeder Level
Feeder Level
Feeder Level

figure 6. An illustration of system-level hosting capacity results.
march/april 2015

ieee power & energy magazine

27



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - March/April 2015

IEEE Power & Energy Magazine - March/April 2015 - Cover1
IEEE Power & Energy Magazine - March/April 2015 - Cover2
IEEE Power & Energy Magazine - March/April 2015 - 1
IEEE Power & Energy Magazine - March/April 2015 - 2
IEEE Power & Energy Magazine - March/April 2015 - 3
IEEE Power & Energy Magazine - March/April 2015 - 4
IEEE Power & Energy Magazine - March/April 2015 - 5
IEEE Power & Energy Magazine - March/April 2015 - 6
IEEE Power & Energy Magazine - March/April 2015 - 7
IEEE Power & Energy Magazine - March/April 2015 - 8
IEEE Power & Energy Magazine - March/April 2015 - 9
IEEE Power & Energy Magazine - March/April 2015 - 10
IEEE Power & Energy Magazine - March/April 2015 - 11
IEEE Power & Energy Magazine - March/April 2015 - 12
IEEE Power & Energy Magazine - March/April 2015 - 13
IEEE Power & Energy Magazine - March/April 2015 - 14
IEEE Power & Energy Magazine - March/April 2015 - 15
IEEE Power & Energy Magazine - March/April 2015 - 16
IEEE Power & Energy Magazine - March/April 2015 - 17
IEEE Power & Energy Magazine - March/April 2015 - 18
IEEE Power & Energy Magazine - March/April 2015 - 19
IEEE Power & Energy Magazine - March/April 2015 - 20
IEEE Power & Energy Magazine - March/April 2015 - 21
IEEE Power & Energy Magazine - March/April 2015 - 22
IEEE Power & Energy Magazine - March/April 2015 - 23
IEEE Power & Energy Magazine - March/April 2015 - 24
IEEE Power & Energy Magazine - March/April 2015 - 25
IEEE Power & Energy Magazine - March/April 2015 - 26
IEEE Power & Energy Magazine - March/April 2015 - 27
IEEE Power & Energy Magazine - March/April 2015 - 28
IEEE Power & Energy Magazine - March/April 2015 - 29
IEEE Power & Energy Magazine - March/April 2015 - 30
IEEE Power & Energy Magazine - March/April 2015 - 31
IEEE Power & Energy Magazine - March/April 2015 - 32
IEEE Power & Energy Magazine - March/April 2015 - 33
IEEE Power & Energy Magazine - March/April 2015 - 34
IEEE Power & Energy Magazine - March/April 2015 - 35
IEEE Power & Energy Magazine - March/April 2015 - 36
IEEE Power & Energy Magazine - March/April 2015 - 37
IEEE Power & Energy Magazine - March/April 2015 - 38
IEEE Power & Energy Magazine - March/April 2015 - 39
IEEE Power & Energy Magazine - March/April 2015 - 40
IEEE Power & Energy Magazine - March/April 2015 - 41
IEEE Power & Energy Magazine - March/April 2015 - 42
IEEE Power & Energy Magazine - March/April 2015 - 43
IEEE Power & Energy Magazine - March/April 2015 - 44
IEEE Power & Energy Magazine - March/April 2015 - 45
IEEE Power & Energy Magazine - March/April 2015 - 46
IEEE Power & Energy Magazine - March/April 2015 - 47
IEEE Power & Energy Magazine - March/April 2015 - 48
IEEE Power & Energy Magazine - March/April 2015 - 49
IEEE Power & Energy Magazine - March/April 2015 - 50
IEEE Power & Energy Magazine - March/April 2015 - 51
IEEE Power & Energy Magazine - March/April 2015 - 52
IEEE Power & Energy Magazine - March/April 2015 - 53
IEEE Power & Energy Magazine - March/April 2015 - 54
IEEE Power & Energy Magazine - March/April 2015 - 55
IEEE Power & Energy Magazine - March/April 2015 - 56
IEEE Power & Energy Magazine - March/April 2015 - 57
IEEE Power & Energy Magazine - March/April 2015 - 58
IEEE Power & Energy Magazine - March/April 2015 - 59
IEEE Power & Energy Magazine - March/April 2015 - 60
IEEE Power & Energy Magazine - March/April 2015 - 61
IEEE Power & Energy Magazine - March/April 2015 - 62
IEEE Power & Energy Magazine - March/April 2015 - 63
IEEE Power & Energy Magazine - March/April 2015 - 64
IEEE Power & Energy Magazine - March/April 2015 - 65
IEEE Power & Energy Magazine - March/April 2015 - 66
IEEE Power & Energy Magazine - March/April 2015 - 67
IEEE Power & Energy Magazine - March/April 2015 - 68
IEEE Power & Energy Magazine - March/April 2015 - 69
IEEE Power & Energy Magazine - March/April 2015 - 70
IEEE Power & Energy Magazine - March/April 2015 - 71
IEEE Power & Energy Magazine - March/April 2015 - 72
IEEE Power & Energy Magazine - March/April 2015 - 73
IEEE Power & Energy Magazine - March/April 2015 - 74
IEEE Power & Energy Magazine - March/April 2015 - 75
IEEE Power & Energy Magazine - March/April 2015 - 76
IEEE Power & Energy Magazine - March/April 2015 - 77
IEEE Power & Energy Magazine - March/April 2015 - 78
IEEE Power & Energy Magazine - March/April 2015 - 79
IEEE Power & Energy Magazine - March/April 2015 - 80
IEEE Power & Energy Magazine - March/April 2015 - 81
IEEE Power & Energy Magazine - March/April 2015 - 82
IEEE Power & Energy Magazine - March/April 2015 - 83
IEEE Power & Energy Magazine - March/April 2015 - 84
IEEE Power & Energy Magazine - March/April 2015 - 85
IEEE Power & Energy Magazine - March/April 2015 - 86
IEEE Power & Energy Magazine - March/April 2015 - 87
IEEE Power & Energy Magazine - March/April 2015 - 88
IEEE Power & Energy Magazine - March/April 2015 - 89
IEEE Power & Energy Magazine - March/April 2015 - 90
IEEE Power & Energy Magazine - March/April 2015 - 91
IEEE Power & Energy Magazine - March/April 2015 - 92
IEEE Power & Energy Magazine - March/April 2015 - 93
IEEE Power & Energy Magazine - March/April 2015 - 94
IEEE Power & Energy Magazine - March/April 2015 - 95
IEEE Power & Energy Magazine - March/April 2015 - 96
IEEE Power & Energy Magazine - March/April 2015 - Cover3
IEEE Power & Energy Magazine - March/April 2015 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com