IEEE Power & Energy Magazine - March/April 2017 - 38

Neighboring
Transformer

Key Takeaways
Transformer
Overload-63 kVA
153 kW of DER Needed
If Optimally Located
340 kW of DER Needed
with 10-kW Limitation

Network System:
Multidirectional
Power Flows

Neighboring
Transformer

DER Location

figure 12. The impact of dispersion in a network system.

proportionally more DERs because more distant load nodes
were needed but were also less effective at mitigating that
violation. In some cases, the DER capacity required was
over five times greater than the size of the violation.
For radial systems, DERs located downstream from a
capacity-constrained asset (relative to the substation) can
contribute directly to relieving the violation, even at a distance. However, radial systems are often reconfigured to
meet new load growth, maintenance, or other operational
considerations, to the point where the DERs could have little
or even an adverse impact. Future operational flexibility
could be limited if the full impact of employing DERs as an
alternative to traditional utility-system resources is not accurately considered. Under the assumptions used in this study,
the SCE results illustrated a reconfiguration scenario where
more than 50% additional DERs would be needed to provide
the same capacity relief as that provided for the normal configuration (see Figure 13).

This study illustrates the complexity and implications of
incorporating DERs into the distribution system to address
distribution loading issues and provide capacity relief. DER
impacts on distribution can be either beneficial or adverse,
depending on a wide variety of contextual circumstances.
Distribution systems are geographically and electrically
distinct, and their characteristics vary from utility to utility and within each utility. The results from the case studies suggests that the value of DERs is not uniform across
a distribution system and cannot be simply determined by
applying generalities about feeder characteristics like megawatts served or any other single performance metric. Comprehensive, objective, and transparent methods are required
for consistent and sensible results.
The net benefits of employing DERs as an alternative
to conventional grid upgrades depends on a complex set of
parameters. Case studies reveal the importance of the physical characteristics of the feeder in valuing DERs and the
complexity of substituting portfolios of DERs for traditional
distribution equipment. The study illustrated that the most
cost-effective choice is significantly influenced by multiple
parameters, including local-area load-growth rates, peak-day
load profile, types of available DERs and capabilities, power
system design, the time and location of the grid upgrades,
and customer-adopted DERs. DERs may provide benefit in
some instances, but it may not always be the best alternative.
To maximize benefits and reduce costs, increased resource
visibility will be required beyond what is available today.
The effectiveness of DERs to provide deferral benefits
is highly dependent on the location of the DERs relative to
a system constraint, and these considerations vary by the
topology of the system. Individual DERs, and a portfolio comprised of multiple DER technologies, have different and complex interactions with the system. Engineering
analyses can establish the DER attributes needed for resolving a system capacity constraint, and this study reveals the
importance of location for DER
solutions to be effective.

Overloaded
Transformer

Moving Forward
A

B

Overloaded
Transformer

C

Neighboring
Transformer
A

Open

B

Closed

Flexible Radial System:
Multidirectional Power
Flows
50% More DER
Needed to Provide the
Same Capacity Relief in
Both Configurations

C

Neighboring
Transformer

figure 13. The impact of reconfiguration in a flexible radial system.
38

ieee power & energy magazine

The case studies suggest that distribution planning is also becoming more complex, requiring a high
degree of granularity, data, and
analysis to ensure that cost-effective
solutions are deployed while planning for the future. New distribution
power models, and the data they require, are needed to accommodate
an improved understanding of system impact. Through the effective
modeling of the distribution system,
a broad range of benefits are realized
such as improved confidence in
march/april 2017



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - March/April 2017

IEEE Power & Energy Magazine - March/April 2017 - Cover1
IEEE Power & Energy Magazine - March/April 2017 - Cover2
IEEE Power & Energy Magazine - March/April 2017 - 1
IEEE Power & Energy Magazine - March/April 2017 - 2
IEEE Power & Energy Magazine - March/April 2017 - 3
IEEE Power & Energy Magazine - March/April 2017 - 4
IEEE Power & Energy Magazine - March/April 2017 - 5
IEEE Power & Energy Magazine - March/April 2017 - 6
IEEE Power & Energy Magazine - March/April 2017 - 7
IEEE Power & Energy Magazine - March/April 2017 - 8
IEEE Power & Energy Magazine - March/April 2017 - 9
IEEE Power & Energy Magazine - March/April 2017 - 10
IEEE Power & Energy Magazine - March/April 2017 - 11
IEEE Power & Energy Magazine - March/April 2017 - 12
IEEE Power & Energy Magazine - March/April 2017 - 13
IEEE Power & Energy Magazine - March/April 2017 - 14
IEEE Power & Energy Magazine - March/April 2017 - 15
IEEE Power & Energy Magazine - March/April 2017 - 16
IEEE Power & Energy Magazine - March/April 2017 - 17
IEEE Power & Energy Magazine - March/April 2017 - 18
IEEE Power & Energy Magazine - March/April 2017 - 19
IEEE Power & Energy Magazine - March/April 2017 - 20
IEEE Power & Energy Magazine - March/April 2017 - 21
IEEE Power & Energy Magazine - March/April 2017 - 22
IEEE Power & Energy Magazine - March/April 2017 - 23
IEEE Power & Energy Magazine - March/April 2017 - 24
IEEE Power & Energy Magazine - March/April 2017 - 25
IEEE Power & Energy Magazine - March/April 2017 - 26
IEEE Power & Energy Magazine - March/April 2017 - 27
IEEE Power & Energy Magazine - March/April 2017 - 28
IEEE Power & Energy Magazine - March/April 2017 - 29
IEEE Power & Energy Magazine - March/April 2017 - 30
IEEE Power & Energy Magazine - March/April 2017 - 31
IEEE Power & Energy Magazine - March/April 2017 - 32
IEEE Power & Energy Magazine - March/April 2017 - 33
IEEE Power & Energy Magazine - March/April 2017 - 34
IEEE Power & Energy Magazine - March/April 2017 - 35
IEEE Power & Energy Magazine - March/April 2017 - 36
IEEE Power & Energy Magazine - March/April 2017 - 37
IEEE Power & Energy Magazine - March/April 2017 - 38
IEEE Power & Energy Magazine - March/April 2017 - 39
IEEE Power & Energy Magazine - March/April 2017 - 40
IEEE Power & Energy Magazine - March/April 2017 - 41
IEEE Power & Energy Magazine - March/April 2017 - 42
IEEE Power & Energy Magazine - March/April 2017 - 43
IEEE Power & Energy Magazine - March/April 2017 - 44
IEEE Power & Energy Magazine - March/April 2017 - 45
IEEE Power & Energy Magazine - March/April 2017 - 46
IEEE Power & Energy Magazine - March/April 2017 - 47
IEEE Power & Energy Magazine - March/April 2017 - 48
IEEE Power & Energy Magazine - March/April 2017 - 49
IEEE Power & Energy Magazine - March/April 2017 - 50
IEEE Power & Energy Magazine - March/April 2017 - 51
IEEE Power & Energy Magazine - March/April 2017 - 52
IEEE Power & Energy Magazine - March/April 2017 - 53
IEEE Power & Energy Magazine - March/April 2017 - 54
IEEE Power & Energy Magazine - March/April 2017 - 55
IEEE Power & Energy Magazine - March/April 2017 - 56
IEEE Power & Energy Magazine - March/April 2017 - 57
IEEE Power & Energy Magazine - March/April 2017 - 58
IEEE Power & Energy Magazine - March/April 2017 - 59
IEEE Power & Energy Magazine - March/April 2017 - 60
IEEE Power & Energy Magazine - March/April 2017 - 61
IEEE Power & Energy Magazine - March/April 2017 - 62
IEEE Power & Energy Magazine - March/April 2017 - 63
IEEE Power & Energy Magazine - March/April 2017 - 64
IEEE Power & Energy Magazine - March/April 2017 - 65
IEEE Power & Energy Magazine - March/April 2017 - 66
IEEE Power & Energy Magazine - March/April 2017 - 67
IEEE Power & Energy Magazine - March/April 2017 - 68
IEEE Power & Energy Magazine - March/April 2017 - 69
IEEE Power & Energy Magazine - March/April 2017 - 70
IEEE Power & Energy Magazine - March/April 2017 - 71
IEEE Power & Energy Magazine - March/April 2017 - 72
IEEE Power & Energy Magazine - March/April 2017 - 73
IEEE Power & Energy Magazine - March/April 2017 - 74
IEEE Power & Energy Magazine - March/April 2017 - 75
IEEE Power & Energy Magazine - March/April 2017 - 76
IEEE Power & Energy Magazine - March/April 2017 - 77
IEEE Power & Energy Magazine - March/April 2017 - 78
IEEE Power & Energy Magazine - March/April 2017 - 79
IEEE Power & Energy Magazine - March/April 2017 - 80
IEEE Power & Energy Magazine - March/April 2017 - 81
IEEE Power & Energy Magazine - March/April 2017 - 82
IEEE Power & Energy Magazine - March/April 2017 - 83
IEEE Power & Energy Magazine - March/April 2017 - 84
IEEE Power & Energy Magazine - March/April 2017 - 85
IEEE Power & Energy Magazine - March/April 2017 - 86
IEEE Power & Energy Magazine - March/April 2017 - 87
IEEE Power & Energy Magazine - March/April 2017 - 88
IEEE Power & Energy Magazine - March/April 2017 - 89
IEEE Power & Energy Magazine - March/April 2017 - 90
IEEE Power & Energy Magazine - March/April 2017 - 91
IEEE Power & Energy Magazine - March/April 2017 - 92
IEEE Power & Energy Magazine - March/April 2017 - 93
IEEE Power & Energy Magazine - March/April 2017 - 94
IEEE Power & Energy Magazine - March/April 2017 - 95
IEEE Power & Energy Magazine - March/April 2017 - 96
IEEE Power & Energy Magazine - March/April 2017 - Cover3
IEEE Power & Energy Magazine - March/April 2017 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com