IEEE Power & Energy Magazine - May/June 2015 - 68

Adding communications to existing grid infrastructure
and increasing the capability of grid devices greatly increases
the capability of our aging electrical infrastructure.

utilities into a brighter and safer future, and we seek to maximize the adoption of such a system by improving reliability,
resilience, and economics through our research and applications on intelligent streetlights in IIT's microgrid.

The CSMART Partners
Commonwealth Edison Company (ComEd) is a unit of
the Chicago-based Exelon Corporation (NYSE: EXC), the
nation's leading competitive energy provider, with approximately 6.6 million customers. ComEd provides service
to approximately 3.8 million customers across northern
Illinois, or 70% of the state's population. As a partner of
CSMART, ComEd is continuing to fulfill the promise of the
smart grid by fostering collaboration and providing a robust
test environment for individuals and companies as they create smart grid-related innovation to benefit its customers.
IIT, founded in 1890 as the Armour Institute, is a private,
independent, nonprofit, Ph.D.-granting research university
with programs in engineering, science, architecture, business, law, design, human sciences, and applied technology.
It has the unique benefit of owning and operating its own
microgrid, which provides the campus grid with improved
economics and resilience. This system and our unique partnerships are used to educate the next generation of engineers
and scientists, improve the understanding around smart grid
technology, and establish the city of Chicago as a hub for
smart grid education and research.
Silver Spring Networks works with utilities and cities
to deploy Internet-of-Things networks across communities,
from establishing lines of communication between customers' smart electric meters, the utility's distribution automation equipment, and back-end management systems to
additional smart city services, such as intelligent streetlights,

figure 1. The IIT microgrid in Chicago. [Source:
Mohammad Shahidehour (IIT), used with permission.]
68

ieee power & energy magazine

traffic controls, pollution and disaster sensors, and electric
vehicle chargers. Any critical infrastructure that can comprise the definition of a "smart city" can be connected into
the network.
A leading business and technology consulting firm based
in Chicago, West Monroe Partners provides holistic business and technology solutions for the transforming energy
and utilities industry. The research done at CSMART will
help West Monroe Partners optimize the data integration,
analysis, and security of advanced smart grid devices and
distributed generation for our utility clients.

The IIT Microgrid
Starting from the campus substations, IIT owns, manages,
and operates its microgrid as an economically viable, environmentally friendly, fuel-efficient, highly reliable, and
resilient infrastructure with self-healing capability. The IIT
microgrid, located 2.5 mi south of downtown of Chicago
(see Figure 1), is funded mostly by a grant from the U.S.
Department of Energy.
The IIT microgrid layout shown in Figure 2 enhances its
operational reliability by applying a reconfiguration of power
distribution assets, an islanding of critical loads, and an optimization of power supply resources- all in real time. The
microgrid has offered the opportunity to eliminate costly outages and power disturbances, provided an economic supply
of hourly loads, reduced peak loads, and mitigated greenhouse gas emissions. The total generation capacity of the IIT
microgrid generation is about 13 MW, including 8 MW of
natural gas turbines, 1 MW of solar generation, 4 MW of
small backup generation, and 8 kW of wind generation. The
campus includes a 500-kW flow battery and several smallsize storage devices. The architecture for the microgrid
controller is depicted in Figure 3. The master controller
will optimize the economic energy flow at three levels (i.e.,
microgrid, microsource/building, and load component/subbuilding). Building meters will provide the master controller
with individual building load profiles. The master controller will communicate and adjust subbuilding loads through
building controllers.
The master controller will also receive the day-ahead price
of electricity, weather data, wind speed, cloud coverage, and
other data for utilizing the renewable sources in the microgrid.
The controller then runs a day-ahead scheduling optimization
algorithm that optimizes the use of microgrid local generation
and balances the hourly demand response (load curtailment and
may/june 2015



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - May/June 2015

IEEE Power & Energy Magazine - May/June 2015 - Cover1
IEEE Power & Energy Magazine - May/June 2015 - Cover2
IEEE Power & Energy Magazine - May/June 2015 - 1
IEEE Power & Energy Magazine - May/June 2015 - 2
IEEE Power & Energy Magazine - May/June 2015 - 3
IEEE Power & Energy Magazine - May/June 2015 - 4
IEEE Power & Energy Magazine - May/June 2015 - 5
IEEE Power & Energy Magazine - May/June 2015 - 6
IEEE Power & Energy Magazine - May/June 2015 - 7
IEEE Power & Energy Magazine - May/June 2015 - 8
IEEE Power & Energy Magazine - May/June 2015 - 9
IEEE Power & Energy Magazine - May/June 2015 - 10
IEEE Power & Energy Magazine - May/June 2015 - 11
IEEE Power & Energy Magazine - May/June 2015 - 12
IEEE Power & Energy Magazine - May/June 2015 - 13
IEEE Power & Energy Magazine - May/June 2015 - 14
IEEE Power & Energy Magazine - May/June 2015 - 15
IEEE Power & Energy Magazine - May/June 2015 - 16
IEEE Power & Energy Magazine - May/June 2015 - 17
IEEE Power & Energy Magazine - May/June 2015 - 18
IEEE Power & Energy Magazine - May/June 2015 - 19
IEEE Power & Energy Magazine - May/June 2015 - 20
IEEE Power & Energy Magazine - May/June 2015 - 21
IEEE Power & Energy Magazine - May/June 2015 - 22
IEEE Power & Energy Magazine - May/June 2015 - 23
IEEE Power & Energy Magazine - May/June 2015 - 24
IEEE Power & Energy Magazine - May/June 2015 - 25
IEEE Power & Energy Magazine - May/June 2015 - 26
IEEE Power & Energy Magazine - May/June 2015 - 27
IEEE Power & Energy Magazine - May/June 2015 - 28
IEEE Power & Energy Magazine - May/June 2015 - 29
IEEE Power & Energy Magazine - May/June 2015 - 30
IEEE Power & Energy Magazine - May/June 2015 - 31
IEEE Power & Energy Magazine - May/June 2015 - 32
IEEE Power & Energy Magazine - May/June 2015 - 33
IEEE Power & Energy Magazine - May/June 2015 - 34
IEEE Power & Energy Magazine - May/June 2015 - 35
IEEE Power & Energy Magazine - May/June 2015 - 36
IEEE Power & Energy Magazine - May/June 2015 - 37
IEEE Power & Energy Magazine - May/June 2015 - 38
IEEE Power & Energy Magazine - May/June 2015 - 39
IEEE Power & Energy Magazine - May/June 2015 - 40
IEEE Power & Energy Magazine - May/June 2015 - 41
IEEE Power & Energy Magazine - May/June 2015 - 42
IEEE Power & Energy Magazine - May/June 2015 - 43
IEEE Power & Energy Magazine - May/June 2015 - 44
IEEE Power & Energy Magazine - May/June 2015 - 45
IEEE Power & Energy Magazine - May/June 2015 - 46
IEEE Power & Energy Magazine - May/June 2015 - 47
IEEE Power & Energy Magazine - May/June 2015 - 48
IEEE Power & Energy Magazine - May/June 2015 - 49
IEEE Power & Energy Magazine - May/June 2015 - 50
IEEE Power & Energy Magazine - May/June 2015 - 51
IEEE Power & Energy Magazine - May/June 2015 - 52
IEEE Power & Energy Magazine - May/June 2015 - 53
IEEE Power & Energy Magazine - May/June 2015 - 54
IEEE Power & Energy Magazine - May/June 2015 - 55
IEEE Power & Energy Magazine - May/June 2015 - 56
IEEE Power & Energy Magazine - May/June 2015 - 57
IEEE Power & Energy Magazine - May/June 2015 - 58
IEEE Power & Energy Magazine - May/June 2015 - 59
IEEE Power & Energy Magazine - May/June 2015 - 60
IEEE Power & Energy Magazine - May/June 2015 - 61
IEEE Power & Energy Magazine - May/June 2015 - 62
IEEE Power & Energy Magazine - May/June 2015 - 63
IEEE Power & Energy Magazine - May/June 2015 - 64
IEEE Power & Energy Magazine - May/June 2015 - 65
IEEE Power & Energy Magazine - May/June 2015 - 66
IEEE Power & Energy Magazine - May/June 2015 - 67
IEEE Power & Energy Magazine - May/June 2015 - 68
IEEE Power & Energy Magazine - May/June 2015 - 69
IEEE Power & Energy Magazine - May/June 2015 - 70
IEEE Power & Energy Magazine - May/June 2015 - 71
IEEE Power & Energy Magazine - May/June 2015 - 72
IEEE Power & Energy Magazine - May/June 2015 - 73
IEEE Power & Energy Magazine - May/June 2015 - 74
IEEE Power & Energy Magazine - May/June 2015 - 75
IEEE Power & Energy Magazine - May/June 2015 - 76
IEEE Power & Energy Magazine - May/June 2015 - 77
IEEE Power & Energy Magazine - May/June 2015 - 78
IEEE Power & Energy Magazine - May/June 2015 - 79
IEEE Power & Energy Magazine - May/June 2015 - 80
IEEE Power & Energy Magazine - May/June 2015 - 81
IEEE Power & Energy Magazine - May/June 2015 - 82
IEEE Power & Energy Magazine - May/June 2015 - 83
IEEE Power & Energy Magazine - May/June 2015 - 84
IEEE Power & Energy Magazine - May/June 2015 - 85
IEEE Power & Energy Magazine - May/June 2015 - 86
IEEE Power & Energy Magazine - May/June 2015 - 87
IEEE Power & Energy Magazine - May/June 2015 - 88
IEEE Power & Energy Magazine - May/June 2015 - 89
IEEE Power & Energy Magazine - May/June 2015 - 90
IEEE Power & Energy Magazine - May/June 2015 - 91
IEEE Power & Energy Magazine - May/June 2015 - 92
IEEE Power & Energy Magazine - May/June 2015 - 93
IEEE Power & Energy Magazine - May/June 2015 - 94
IEEE Power & Energy Magazine - May/June 2015 - 95
IEEE Power & Energy Magazine - May/June 2015 - 96
IEEE Power & Energy Magazine - May/June 2015 - Cover3
IEEE Power & Energy Magazine - May/June 2015 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com