IEEE Power & Energy Magazine - May/June 2016 - 40

Wholesale Market
5-min Modal Energy Prices
Service
Provider
Operations
Bids
Clearing
Price

Usage

Meter

Supply Usage
Information

Home
Residential
Energy
Management
System

Bids

Dispatch
System

Clearing Price

Consumer
Display
Monthly Bill

~200
Homes
on Four
Feeders

Operations Center

Programmable
Thermostat

Field

figure 3. A design overview of the AEP Ohio gridSMART RTP system.

rebates a household for the difference between the congested
clearing price and the normal 5-min real-time price and
provides an incentive payment to a household if its bid was
above the normal clearing price but below the congestion

MW

10
8
6
4
2
0
150

clearing price. an analysis of the
field results indicated that wholesale purchases and household bills
reduced by about 5% each.
the field data was also used
to calibrate simulated household demand-response models
for investigating higher penetration levels participants. figure 5
plots the expected response to
congestion events on a feeder
with 100% rtP household penetration. the dotted line represents a simulation without rtP
response and the remaining lines
show responses and the rebound
for one-, two-, four-, and six-hour
congestion events that represent
the maximum response using the
diversity of thermostat settings
seen in the field.

Pacific Northwest Smart Grid
Demonstration, 2010-2015
the Pacific northwest Smart grid demonstration
(PnWSgd) included multiple states and cooperation from

Feeder 180 Power
Feeder-Rated Capacity
Feeder Limit
Feeder Power

Reduce Feeder
Capacity to
Engage End Use

HVAC Load
Oversatisfied
Inactive
Must Run
Active

100
Devices
Respond to
Price
Fluctuations
US$/MWh

50
04 05 06

HVAC Units
Drop Off

RTP PJM Price
Constrained Price
Price Volatility

500

Units Rebound
When Capacity
Returns to
Normal

12 13 14 15 16 17 18 19 20 21
Hour
Feeder 180 Price
18 July 2013 20:30

0
3
Average Indoor
Temperature Rises
~4 °F Over
Four Hours

0

80
78
76
74
72

04 05

Price Rises to
Price Cap

12 13 14 15 16 17 18 19 20 21
Hour
House Temperatures, Feeder 180
18 July 2013 20:30
Observed Average Temperature
Temperature Average Deviation

5
0

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

∆F

F

-3

-5

figure 4. The AEP Ohio gridSMART RTP transactive system in action.
40

ieee power & energy magazine

may/june 2016



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - May/June 2016

IEEE Power & Energy Magazine - May/June 2016 - Cover1
IEEE Power & Energy Magazine - May/June 2016 - Cover2
IEEE Power & Energy Magazine - May/June 2016 - 1
IEEE Power & Energy Magazine - May/June 2016 - 2
IEEE Power & Energy Magazine - May/June 2016 - 3
IEEE Power & Energy Magazine - May/June 2016 - 4
IEEE Power & Energy Magazine - May/June 2016 - 5
IEEE Power & Energy Magazine - May/June 2016 - 6
IEEE Power & Energy Magazine - May/June 2016 - 7
IEEE Power & Energy Magazine - May/June 2016 - 8
IEEE Power & Energy Magazine - May/June 2016 - 9
IEEE Power & Energy Magazine - May/June 2016 - 10
IEEE Power & Energy Magazine - May/June 2016 - 11
IEEE Power & Energy Magazine - May/June 2016 - 12
IEEE Power & Energy Magazine - May/June 2016 - 13
IEEE Power & Energy Magazine - May/June 2016 - 14
IEEE Power & Energy Magazine - May/June 2016 - 15
IEEE Power & Energy Magazine - May/June 2016 - 16
IEEE Power & Energy Magazine - May/June 2016 - 17
IEEE Power & Energy Magazine - May/June 2016 - 18
IEEE Power & Energy Magazine - May/June 2016 - 19
IEEE Power & Energy Magazine - May/June 2016 - 20
IEEE Power & Energy Magazine - May/June 2016 - 21
IEEE Power & Energy Magazine - May/June 2016 - 22
IEEE Power & Energy Magazine - May/June 2016 - 23
IEEE Power & Energy Magazine - May/June 2016 - 24
IEEE Power & Energy Magazine - May/June 2016 - 25
IEEE Power & Energy Magazine - May/June 2016 - 26
IEEE Power & Energy Magazine - May/June 2016 - 27
IEEE Power & Energy Magazine - May/June 2016 - 28
IEEE Power & Energy Magazine - May/June 2016 - 29
IEEE Power & Energy Magazine - May/June 2016 - 30
IEEE Power & Energy Magazine - May/June 2016 - 31
IEEE Power & Energy Magazine - May/June 2016 - 32
IEEE Power & Energy Magazine - May/June 2016 - 33
IEEE Power & Energy Magazine - May/June 2016 - 34
IEEE Power & Energy Magazine - May/June 2016 - 35
IEEE Power & Energy Magazine - May/June 2016 - 36
IEEE Power & Energy Magazine - May/June 2016 - 37
IEEE Power & Energy Magazine - May/June 2016 - 38
IEEE Power & Energy Magazine - May/June 2016 - 39
IEEE Power & Energy Magazine - May/June 2016 - 40
IEEE Power & Energy Magazine - May/June 2016 - 41
IEEE Power & Energy Magazine - May/June 2016 - 42
IEEE Power & Energy Magazine - May/June 2016 - 43
IEEE Power & Energy Magazine - May/June 2016 - 44
IEEE Power & Energy Magazine - May/June 2016 - 45
IEEE Power & Energy Magazine - May/June 2016 - 46
IEEE Power & Energy Magazine - May/June 2016 - 47
IEEE Power & Energy Magazine - May/June 2016 - 48
IEEE Power & Energy Magazine - May/June 2016 - 49
IEEE Power & Energy Magazine - May/June 2016 - 50
IEEE Power & Energy Magazine - May/June 2016 - 51
IEEE Power & Energy Magazine - May/June 2016 - 52
IEEE Power & Energy Magazine - May/June 2016 - 53
IEEE Power & Energy Magazine - May/June 2016 - 54
IEEE Power & Energy Magazine - May/June 2016 - 55
IEEE Power & Energy Magazine - May/June 2016 - 56
IEEE Power & Energy Magazine - May/June 2016 - 57
IEEE Power & Energy Magazine - May/June 2016 - 58
IEEE Power & Energy Magazine - May/June 2016 - 59
IEEE Power & Energy Magazine - May/June 2016 - 60
IEEE Power & Energy Magazine - May/June 2016 - 61
IEEE Power & Energy Magazine - May/June 2016 - 62
IEEE Power & Energy Magazine - May/June 2016 - 63
IEEE Power & Energy Magazine - May/June 2016 - 64
IEEE Power & Energy Magazine - May/June 2016 - 65
IEEE Power & Energy Magazine - May/June 2016 - 66
IEEE Power & Energy Magazine - May/June 2016 - 67
IEEE Power & Energy Magazine - May/June 2016 - 68
IEEE Power & Energy Magazine - May/June 2016 - 69
IEEE Power & Energy Magazine - May/June 2016 - 70
IEEE Power & Energy Magazine - May/June 2016 - 71
IEEE Power & Energy Magazine - May/June 2016 - 72
IEEE Power & Energy Magazine - May/June 2016 - 73
IEEE Power & Energy Magazine - May/June 2016 - 74
IEEE Power & Energy Magazine - May/June 2016 - 75
IEEE Power & Energy Magazine - May/June 2016 - 76
IEEE Power & Energy Magazine - May/June 2016 - 77
IEEE Power & Energy Magazine - May/June 2016 - 78
IEEE Power & Energy Magazine - May/June 2016 - 79
IEEE Power & Energy Magazine - May/June 2016 - 80
IEEE Power & Energy Magazine - May/June 2016 - 81
IEEE Power & Energy Magazine - May/June 2016 - 82
IEEE Power & Energy Magazine - May/June 2016 - 83
IEEE Power & Energy Magazine - May/June 2016 - 84
IEEE Power & Energy Magazine - May/June 2016 - 85
IEEE Power & Energy Magazine - May/June 2016 - 86
IEEE Power & Energy Magazine - May/June 2016 - 87
IEEE Power & Energy Magazine - May/June 2016 - 88
IEEE Power & Energy Magazine - May/June 2016 - 89
IEEE Power & Energy Magazine - May/June 2016 - 90
IEEE Power & Energy Magazine - May/June 2016 - 91
IEEE Power & Energy Magazine - May/June 2016 - 92
IEEE Power & Energy Magazine - May/June 2016 - 93
IEEE Power & Energy Magazine - May/June 2016 - 94
IEEE Power & Energy Magazine - May/June 2016 - 95
IEEE Power & Energy Magazine - May/June 2016 - 96
IEEE Power & Energy Magazine - May/June 2016 - 97
IEEE Power & Energy Magazine - May/June 2016 - 98
IEEE Power & Energy Magazine - May/June 2016 - 99
IEEE Power & Energy Magazine - May/June 2016 - 100
IEEE Power & Energy Magazine - May/June 2016 - 101
IEEE Power & Energy Magazine - May/June 2016 - 102
IEEE Power & Energy Magazine - May/June 2016 - 103
IEEE Power & Energy Magazine - May/June 2016 - 104
IEEE Power & Energy Magazine - May/June 2016 - Cover3
IEEE Power & Energy Magazine - May/June 2016 - Cover4
http://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
http://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
http://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
http://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
http://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
http://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
http://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
http://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
http://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
http://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
http://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
http://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
http://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
http://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
http://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
http://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
http://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
http://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
http://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
http://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
http://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
http://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
http://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
http://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
http://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
http://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
http://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
http://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
http://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
http://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
http://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
http://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
http://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
http://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
http://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
http://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
http://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
http://www.nxtbookMEDIA.com