IEEE Power & Energy Magazine - July/August 2016 - 35

Model
Formulation

Scenario
Development

Network
Simplification

Stochastic Transmission Planning

figure 2. The JHSMINE planning schematic.

(0.2) probabilities for each scenario, plan b is actually less
expensive by about Us$5 billion in expected present worth.
Thus, making a naïve decision (plan a) based on a single
scenario rather than the stochastic decision (plan b) that
considers system adaptability under several scenarios could
result in a cost penalty of the same order of magnitude as the
investments themselves.

JHSMINE-A Stochastic
Transmission Planning Tool
we now describe in greater detail an illustrative stochastic
analysis using the Johns hopkins stochastic multistage Integrated network expansion (JhsmIne) model, testing its
performance with the data from the weCC. figure 2 shows
a schematic of the basic steps involved in using JhsmIne
that we describe in this section.

Brainstorm Variables
Rate Importance of Variables
Choose Range of Variables
Provide Nine TAG Scenarios
Define Three Correlated Groups
Define Six Gap Scenarios
Combine Similar Scenarios
Review Relative Impacts and
Likelihood of Scenarios
Consolidation of Scenarios
Probability Assignments
Runs
Scenario Input from TAG

Scenario Input from JHU

figure 3. The scenario development procedures in the
JHU-WECC study.
36

ieee power & energy magazine

for the first step, we formulated the model to fully
address the key considerations of system-level interactions,
future uncertainties, and system adaptability by appropriate
definitions of the objective and constraints:
✔ minimize the probability-weighted present worth of
transmission and generation capital plus operating
costs subject to the following constraints:
*	short-term operational constraints (energy balances,
Kirchhoff's voltage law to represent parallel flows,
capacity limits on plant generation and transmission
flow, wind- and solar-output limitations by hour,
operating-reserve requirements, and renewable portfolio standards)
*	long-run expansion constraints (siting limitations on
the location and capacity of new lines and generation).
This model is structured as a multistage mixed-integer
linear program, which is solved as a single large optimization problem. The stages are the years considered (e.g., years
1-10 investments represent stage 1, years 11-20 investments
are stage 2), as shown in figure 1. operating hours within
each stage are chosen from a representative single year and
are either chronological for representative days (as in our
relaxed unit commitment implementation of JhsmIne) or
are randomly selected (as in our load duration curve implementation). The resulting model has on the order of 1-3
million variables, depending on the particular formulation,
number of scenarios, and number of operating hours.
In the second step, we need a comprehensive set of scenarios (called "study cases" by weCC). The variables that
vary among the scenarios should be important: they would
affect the relative desirability of different investments, and
there is a reasonably large range of possible values in the
future. The only thing we can be sure of is that the future
behavior of these variables will be different from the past,
so their possible ranges, distributions, and correlations must,
by necessity, rely on expert judgment. In the weCC study,
Johns hopkins University (JhU) collaborated with a group
of experts and stakeholders called the technical advisory
group (TaG), and developed 20 scenarios to be analyzed.
figure 3 outlines the procedure used to develop the scenarios, with a generic procedure shown on the right and our
specific implementation on the left.
as figure 3 suggests, a number of different types of
judgments were necessary, some of which were made by
the TaG experts and some by JhU staff. The members of
the TaG picked those variables they thought would most
impact the weCC system and then provided ranges (i.e.,
90% confidence intervals) for each variable. The variables
suggested for the weCC study included, among others, natural gas and coal prices, carbon tax, energy growth, peakload growth, renewable portfolio standards, and capital
costs of wind, solar, and geothermal plants (Table 1). Then,
the TaG experts considered the five original 2013 TeppC
scenarios and added nine more scenarios (particular combinations of the variables) they thought were plausible.
july/august 2016



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - July/August 2016

IEEE Power & Energy Magazine - July/August 2016 - Cover1
IEEE Power & Energy Magazine - July/August 2016 - Cover2
IEEE Power & Energy Magazine - July/August 2016 - 1
IEEE Power & Energy Magazine - July/August 2016 - 2
IEEE Power & Energy Magazine - July/August 2016 - 3
IEEE Power & Energy Magazine - July/August 2016 - 4
IEEE Power & Energy Magazine - July/August 2016 - 5
IEEE Power & Energy Magazine - July/August 2016 - 6
IEEE Power & Energy Magazine - July/August 2016 - 7
IEEE Power & Energy Magazine - July/August 2016 - 8
IEEE Power & Energy Magazine - July/August 2016 - 9
IEEE Power & Energy Magazine - July/August 2016 - 10
IEEE Power & Energy Magazine - July/August 2016 - 11
IEEE Power & Energy Magazine - July/August 2016 - 12
IEEE Power & Energy Magazine - July/August 2016 - 13
IEEE Power & Energy Magazine - July/August 2016 - 14
IEEE Power & Energy Magazine - July/August 2016 - 15
IEEE Power & Energy Magazine - July/August 2016 - 16
IEEE Power & Energy Magazine - July/August 2016 - 17
IEEE Power & Energy Magazine - July/August 2016 - 18
IEEE Power & Energy Magazine - July/August 2016 - 19
IEEE Power & Energy Magazine - July/August 2016 - 20
IEEE Power & Energy Magazine - July/August 2016 - 21
IEEE Power & Energy Magazine - July/August 2016 - 22
IEEE Power & Energy Magazine - July/August 2016 - 23
IEEE Power & Energy Magazine - July/August 2016 - 24
IEEE Power & Energy Magazine - July/August 2016 - 25
IEEE Power & Energy Magazine - July/August 2016 - 26
IEEE Power & Energy Magazine - July/August 2016 - 27
IEEE Power & Energy Magazine - July/August 2016 - 28
IEEE Power & Energy Magazine - July/August 2016 - 29
IEEE Power & Energy Magazine - July/August 2016 - 30
IEEE Power & Energy Magazine - July/August 2016 - 31
IEEE Power & Energy Magazine - July/August 2016 - 32
IEEE Power & Energy Magazine - July/August 2016 - 33
IEEE Power & Energy Magazine - July/August 2016 - 34
IEEE Power & Energy Magazine - July/August 2016 - 35
IEEE Power & Energy Magazine - July/August 2016 - 36
IEEE Power & Energy Magazine - July/August 2016 - 37
IEEE Power & Energy Magazine - July/August 2016 - 38
IEEE Power & Energy Magazine - July/August 2016 - 39
IEEE Power & Energy Magazine - July/August 2016 - 40
IEEE Power & Energy Magazine - July/August 2016 - 41
IEEE Power & Energy Magazine - July/August 2016 - 42
IEEE Power & Energy Magazine - July/August 2016 - 43
IEEE Power & Energy Magazine - July/August 2016 - 44
IEEE Power & Energy Magazine - July/August 2016 - 45
IEEE Power & Energy Magazine - July/August 2016 - 46
IEEE Power & Energy Magazine - July/August 2016 - 47
IEEE Power & Energy Magazine - July/August 2016 - 48
IEEE Power & Energy Magazine - July/August 2016 - 49
IEEE Power & Energy Magazine - July/August 2016 - 50
IEEE Power & Energy Magazine - July/August 2016 - 51
IEEE Power & Energy Magazine - July/August 2016 - 52
IEEE Power & Energy Magazine - July/August 2016 - 53
IEEE Power & Energy Magazine - July/August 2016 - 54
IEEE Power & Energy Magazine - July/August 2016 - 55
IEEE Power & Energy Magazine - July/August 2016 - 56
IEEE Power & Energy Magazine - July/August 2016 - 57
IEEE Power & Energy Magazine - July/August 2016 - 58
IEEE Power & Energy Magazine - July/August 2016 - 59
IEEE Power & Energy Magazine - July/August 2016 - 60
IEEE Power & Energy Magazine - July/August 2016 - 61
IEEE Power & Energy Magazine - July/August 2016 - 62
IEEE Power & Energy Magazine - July/August 2016 - 63
IEEE Power & Energy Magazine - July/August 2016 - 64
IEEE Power & Energy Magazine - July/August 2016 - 65
IEEE Power & Energy Magazine - July/August 2016 - 66
IEEE Power & Energy Magazine - July/August 2016 - 67
IEEE Power & Energy Magazine - July/August 2016 - 68
IEEE Power & Energy Magazine - July/August 2016 - 69
IEEE Power & Energy Magazine - July/August 2016 - 70
IEEE Power & Energy Magazine - July/August 2016 - 71
IEEE Power & Energy Magazine - July/August 2016 - 72
IEEE Power & Energy Magazine - July/August 2016 - 73
IEEE Power & Energy Magazine - July/August 2016 - 74
IEEE Power & Energy Magazine - July/August 2016 - 75
IEEE Power & Energy Magazine - July/August 2016 - 76
IEEE Power & Energy Magazine - July/August 2016 - 77
IEEE Power & Energy Magazine - July/August 2016 - 78
IEEE Power & Energy Magazine - July/August 2016 - 79
IEEE Power & Energy Magazine - July/August 2016 - 80
IEEE Power & Energy Magazine - July/August 2016 - 81
IEEE Power & Energy Magazine - July/August 2016 - 82
IEEE Power & Energy Magazine - July/August 2016 - 83
IEEE Power & Energy Magazine - July/August 2016 - 84
IEEE Power & Energy Magazine - July/August 2016 - 85
IEEE Power & Energy Magazine - July/August 2016 - 86
IEEE Power & Energy Magazine - July/August 2016 - 87
IEEE Power & Energy Magazine - July/August 2016 - 88
IEEE Power & Energy Magazine - July/August 2016 - 89
IEEE Power & Energy Magazine - July/August 2016 - 90
IEEE Power & Energy Magazine - July/August 2016 - 91
IEEE Power & Energy Magazine - July/August 2016 - 92
IEEE Power & Energy Magazine - July/August 2016 - 93
IEEE Power & Energy Magazine - July/August 2016 - 94
IEEE Power & Energy Magazine - July/August 2016 - 95
IEEE Power & Energy Magazine - July/August 2016 - 96
IEEE Power & Energy Magazine - July/August 2016 - 97
IEEE Power & Energy Magazine - July/August 2016 - 98
IEEE Power & Energy Magazine - July/August 2016 - 99
IEEE Power & Energy Magazine - July/August 2016 - 100
IEEE Power & Energy Magazine - July/August 2016 - 101
IEEE Power & Energy Magazine - July/August 2016 - 102
IEEE Power & Energy Magazine - July/August 2016 - 103
IEEE Power & Energy Magazine - July/August 2016 - 104
IEEE Power & Energy Magazine - July/August 2016 - 105
IEEE Power & Energy Magazine - July/August 2016 - 106
IEEE Power & Energy Magazine - July/August 2016 - 107
IEEE Power & Energy Magazine - July/August 2016 - 108
IEEE Power & Energy Magazine - July/August 2016 - 109
IEEE Power & Energy Magazine - July/August 2016 - 110
IEEE Power & Energy Magazine - July/August 2016 - 111
IEEE Power & Energy Magazine - July/August 2016 - 112
IEEE Power & Energy Magazine - July/August 2016 - 113
IEEE Power & Energy Magazine - July/August 2016 - 114
IEEE Power & Energy Magazine - July/August 2016 - Cover3
IEEE Power & Energy Magazine - July/August 2016 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com