IEEE Power & Energy Magazine - July/August 2018 - 67

of medium or heavy-duty trucking, or other transportation addition of new grid-connected battery storage. Beyond 2030,
sectors, as the California scenario does. as a result, by 2030, the California study suggests that hydrogen production could
the total new transportation electrification loads in both sce- emerge as an important energy storage medium and could help
narios are comparable, representing between 8 and 9% of total reduce curtailment.
natural gas demand declines in both regions between
loads in California and the northeast.
the northeast scenario assumes relatively higher levels today and 2030, although the decrease is more pronounced
of building electrification and lower ee improvements than in California than in the northeast due to the higher levthe California scenario. in addition, since building heating els of renewable generation and ee in the California scedemands are higher in the northeast than in California, nario. California's demand for natural gas from electric
these electrification assumptions result in a higher share of generation decreases by nearly 40% over this period, while
total loads coming from electric heat. in the northeast sce- nonelectric gas demand declines by 15%. in the northeast,
nario, nearly 25% of building heat demand is met by heat electric generation gas demand decreases by 20%, while
pumps by 2030, compared to only a 7% increase in Califor- nonelectric gas demand declines by only 1%. since the
nia. in the northeast scenarios, total electric heating loads northeast has a higher reliance on higher emitting fuel oils
are nearly as large as transportation electrification loads by for building heating than California, significant ghg savings can be achieved by switching to both natural gas and
2030 (table 1).
a comparison of the two studies' results across the electricity for heat.
five metrics established at the outset of this article illustrates some
of the key differences and similarities between the decar- Summary
bonization strategies simulated in each region (table 2). the long-term decarbonization of our energy economies is
the California scenario simulates a more diversified approach expected to require not just high levels of ee and low-carbon
to decarbonization, with a heavy reliance on ee, renew- electricity but also significant transportation and end-use elecable energy, biofuels, electrification, and flexible loads. the trification by 2050. this article provides greater clarity on the
northeast scenario maintains steady growth in ee but accel- changes to the California and northeast energy systems on
erates re development and electrification to simulate how the that path to 2050. the study results suggest that while existsystem would operate in a high-re, highly electrified future.
ing energy-policy mandates achieve significant reductions in
despite the differences in scenario design between the study
table 2. The 40 × 30 scenario results for California
regions, it is useful to compare the
and the Northeast in 2030, compared to present day.
regional results. in the California scenario, electricity demand
Today
2030
hardly increases by 2030 in the
Category
California
Northeast
California
Northeast
high-electrification scenario, due
to high levels of ee offsetting new
Total electricity demand (TWh) 288
291
295
334
electrification loads, while peak
Electricity demand due to
1
1
30
50
demand slightly declines, again
electrification (TWh)
due to high levels of ee, as well
Peak electricity demand (GW)
61
58
59
68
as additional demand response
RE Curtailment (RE generation)
0%
<1%
4%
5%
(dr), flexible loads and daytime
controlled charging of eVs. in
Natural gas demand-electric
1179
863
669
703
generation (bcf/yr)
contrast, in the northeast scenario,
less ee, dr, and flexible charging
Natural gas demand-
1616
1336
1370
1319
is assumed, resulting in significant
nonelectric generation (bcf/yr)
increases in both total electricity
Carbon intensity of power
231
227
99
128
demand and peak demand. in both
generation (g CO2/kWh)
studies, the load factor is observed
Carbon intensity of nonelectric
5307
5307
4563*
5307
to increase.
generation natural gas (g CO2/
therm)
total levels of renewable energy
curtailment are similar across both
72
56
32
40
Total electricity sector GHG
regions, despite the higher prevaemissions (MMTCO2e)
lence of solar in California. in the
Average delivered cost of
$0.16
$.16
$0.19
$.19
California scenario, overgeneration
electricity (US$/kWh)
of solar is avoided, in part, through
*The California 2030 high-electrification scenario includes biomethane blended into
flexible loads and daytime chargthe natural gas pipeline, which reduces the carbon intensity of gas.
ing of eVs but also through the
july/august 2018

ieee power & energy magazine

67



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - July/August 2018

Contents
IEEE Power & Energy Magazine - July/August 2018 - Cover1
IEEE Power & Energy Magazine - July/August 2018 - Cover2
IEEE Power & Energy Magazine - July/August 2018 - Contents
IEEE Power & Energy Magazine - July/August 2018 - 2
IEEE Power & Energy Magazine - July/August 2018 - 3
IEEE Power & Energy Magazine - July/August 2018 - 4
IEEE Power & Energy Magazine - July/August 2018 - 5
IEEE Power & Energy Magazine - July/August 2018 - 6
IEEE Power & Energy Magazine - July/August 2018 - 7
IEEE Power & Energy Magazine - July/August 2018 - 8
IEEE Power & Energy Magazine - July/August 2018 - 9
IEEE Power & Energy Magazine - July/August 2018 - 10
IEEE Power & Energy Magazine - July/August 2018 - 11
IEEE Power & Energy Magazine - July/August 2018 - 12
IEEE Power & Energy Magazine - July/August 2018 - 13
IEEE Power & Energy Magazine - July/August 2018 - 14
IEEE Power & Energy Magazine - July/August 2018 - 15
IEEE Power & Energy Magazine - July/August 2018 - 16
IEEE Power & Energy Magazine - July/August 2018 - 17
IEEE Power & Energy Magazine - July/August 2018 - 18
IEEE Power & Energy Magazine - July/August 2018 - 19
IEEE Power & Energy Magazine - July/August 2018 - 20
IEEE Power & Energy Magazine - July/August 2018 - 21
IEEE Power & Energy Magazine - July/August 2018 - 22
IEEE Power & Energy Magazine - July/August 2018 - 23
IEEE Power & Energy Magazine - July/August 2018 - 24
IEEE Power & Energy Magazine - July/August 2018 - 25
IEEE Power & Energy Magazine - July/August 2018 - 26
IEEE Power & Energy Magazine - July/August 2018 - 27
IEEE Power & Energy Magazine - July/August 2018 - 28
IEEE Power & Energy Magazine - July/August 2018 - 29
IEEE Power & Energy Magazine - July/August 2018 - 30
IEEE Power & Energy Magazine - July/August 2018 - 31
IEEE Power & Energy Magazine - July/August 2018 - 32
IEEE Power & Energy Magazine - July/August 2018 - 33
IEEE Power & Energy Magazine - July/August 2018 - 34
IEEE Power & Energy Magazine - July/August 2018 - 35
IEEE Power & Energy Magazine - July/August 2018 - 36
IEEE Power & Energy Magazine - July/August 2018 - 37
IEEE Power & Energy Magazine - July/August 2018 - 38
IEEE Power & Energy Magazine - July/August 2018 - 39
IEEE Power & Energy Magazine - July/August 2018 - 40
IEEE Power & Energy Magazine - July/August 2018 - 41
IEEE Power & Energy Magazine - July/August 2018 - 42
IEEE Power & Energy Magazine - July/August 2018 - 43
IEEE Power & Energy Magazine - July/August 2018 - 44
IEEE Power & Energy Magazine - July/August 2018 - 45
IEEE Power & Energy Magazine - July/August 2018 - 46
IEEE Power & Energy Magazine - July/August 2018 - 47
IEEE Power & Energy Magazine - July/August 2018 - 48
IEEE Power & Energy Magazine - July/August 2018 - 49
IEEE Power & Energy Magazine - July/August 2018 - 50
IEEE Power & Energy Magazine - July/August 2018 - 51
IEEE Power & Energy Magazine - July/August 2018 - 52
IEEE Power & Energy Magazine - July/August 2018 - 53
IEEE Power & Energy Magazine - July/August 2018 - 54
IEEE Power & Energy Magazine - July/August 2018 - 55
IEEE Power & Energy Magazine - July/August 2018 - 56
IEEE Power & Energy Magazine - July/August 2018 - 57
IEEE Power & Energy Magazine - July/August 2018 - 58
IEEE Power & Energy Magazine - July/August 2018 - 59
IEEE Power & Energy Magazine - July/August 2018 - 60
IEEE Power & Energy Magazine - July/August 2018 - 61
IEEE Power & Energy Magazine - July/August 2018 - 62
IEEE Power & Energy Magazine - July/August 2018 - 63
IEEE Power & Energy Magazine - July/August 2018 - 64
IEEE Power & Energy Magazine - July/August 2018 - 65
IEEE Power & Energy Magazine - July/August 2018 - 66
IEEE Power & Energy Magazine - July/August 2018 - 67
IEEE Power & Energy Magazine - July/August 2018 - 68
IEEE Power & Energy Magazine - July/August 2018 - 69
IEEE Power & Energy Magazine - July/August 2018 - 70
IEEE Power & Energy Magazine - July/August 2018 - 71
IEEE Power & Energy Magazine - July/August 2018 - 72
IEEE Power & Energy Magazine - July/August 2018 - 73
IEEE Power & Energy Magazine - July/August 2018 - 74
IEEE Power & Energy Magazine - July/August 2018 - 75
IEEE Power & Energy Magazine - July/August 2018 - 76
IEEE Power & Energy Magazine - July/August 2018 - 77
IEEE Power & Energy Magazine - July/August 2018 - 78
IEEE Power & Energy Magazine - July/August 2018 - 79
IEEE Power & Energy Magazine - July/August 2018 - 80
IEEE Power & Energy Magazine - July/August 2018 - 81
IEEE Power & Energy Magazine - July/August 2018 - 82
IEEE Power & Energy Magazine - July/August 2018 - 83
IEEE Power & Energy Magazine - July/August 2018 - 84
IEEE Power & Energy Magazine - July/August 2018 - 85
IEEE Power & Energy Magazine - July/August 2018 - 86
IEEE Power & Energy Magazine - July/August 2018 - 87
IEEE Power & Energy Magazine - July/August 2018 - 88
IEEE Power & Energy Magazine - July/August 2018 - 89
IEEE Power & Energy Magazine - July/August 2018 - 90
IEEE Power & Energy Magazine - July/August 2018 - 91
IEEE Power & Energy Magazine - July/August 2018 - 92
IEEE Power & Energy Magazine - July/August 2018 - 93
IEEE Power & Energy Magazine - July/August 2018 - 94
IEEE Power & Energy Magazine - July/August 2018 - 95
IEEE Power & Energy Magazine - July/August 2018 - 96
IEEE Power & Energy Magazine - July/August 2018 - 97
IEEE Power & Energy Magazine - July/August 2018 - 98
IEEE Power & Energy Magazine - July/August 2018 - 99
IEEE Power & Energy Magazine - July/August 2018 - 100
IEEE Power & Energy Magazine - July/August 2018 - 101
IEEE Power & Energy Magazine - July/August 2018 - 102
IEEE Power & Energy Magazine - July/August 2018 - 103
IEEE Power & Energy Magazine - July/August 2018 - 104
IEEE Power & Energy Magazine - July/August 2018 - 105
IEEE Power & Energy Magazine - July/August 2018 - 106
IEEE Power & Energy Magazine - July/August 2018 - 107
IEEE Power & Energy Magazine - July/August 2018 - 108
IEEE Power & Energy Magazine - July/August 2018 - 109
IEEE Power & Energy Magazine - July/August 2018 - 110
IEEE Power & Energy Magazine - July/August 2018 - 111
IEEE Power & Energy Magazine - July/August 2018 - 112
IEEE Power & Energy Magazine - July/August 2018 - 113
IEEE Power & Energy Magazine - July/August 2018 - 114
IEEE Power & Energy Magazine - July/August 2018 - 115
IEEE Power & Energy Magazine - July/August 2018 - 116
IEEE Power & Energy Magazine - July/August 2018 - 117
IEEE Power & Energy Magazine - July/August 2018 - 118
IEEE Power & Energy Magazine - July/August 2018 - 119
IEEE Power & Energy Magazine - July/August 2018 - 120
IEEE Power & Energy Magazine - July/August 2018 - 121
IEEE Power & Energy Magazine - July/August 2018 - 122
IEEE Power & Energy Magazine - July/August 2018 - 123
IEEE Power & Energy Magazine - July/August 2018 - 124
IEEE Power & Energy Magazine - July/August 2018 - 125
IEEE Power & Energy Magazine - July/August 2018 - 126
IEEE Power & Energy Magazine - July/August 2018 - 127
IEEE Power & Energy Magazine - July/August 2018 - 128
IEEE Power & Energy Magazine - July/August 2018 - 129
IEEE Power & Energy Magazine - July/August 2018 - 130
IEEE Power & Energy Magazine - July/August 2018 - 131
IEEE Power & Energy Magazine - July/August 2018 - 132
IEEE Power & Energy Magazine - July/August 2018 - Cover3
IEEE Power & Energy Magazine - July/August 2018 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com