IEEE Power & Energy Magazine - July/August 2018 - 73

Electricity is also widely used in the residential sector
for water heating, which is typically combined with
thermal storage (a water cylinder).

Ireland, the united Kingdom, germany, france, and new
Zealand. traditional nighttime storage heaters were used to
reduce systemwide peak loads and fill in the night "valley"
and allowed customers to use less-expensive off-peak electricity tariffs to meet their heating demand. storage heaters
contain a core of high thermal capacity bricks, heated
by a resistive heating element and surrounded by a highly
insulated enclosure. they are designed to be used on a 24-h
cycle (i.e., charged at night and heat released during the day),
although older storage heaters could not always keep sufficient charge levels to maintain thermal comfort on colder
winter days. Modern storage heaters, through improved insulation and controls (the release of the heat during a 24-h cycle
can be more accurately controlled with the use of a variable
speed circulation fan), offer a higher degree of comfort to end
users. Moreover, with adequate controls and communication,
smart electrical thermal storage (sets) can participate in
active demand-side management (DsM) and enhance power
system flexibility. the eu-funded Horizon 2020 realValue
project is trialing sets systems at a household level, providing a range of system services while maintaining the thermal
comfort of customers.
electricity is also widely used in the residential sector
for water heating, which is typically combined with thermal
storage (a water cylinder). as with space heating, this storage capacity decouples the power demand from the heating
demand, and when equipped with communication and control architecture, electrical water heaters can also participate
in DsM.
the building envelope itself also provides thermal inertia
depending on the insulation level. In a well-insulated house,
electric load can be shifted (around 5-12 h), depending on
the building insulation level, while consumer comfort is still
met. preheating increases flexibility but typically increases
energy usage, depending on the insulation level. thermal
storage and building preheating enables large demand shifting potential at very low cost, especially when compared to
electricity storage.

Hybridization
Hybrid heaters combine different heating appliances in one system and can switch between those appliances during operation, providing a very flexible demand. possible configurations include Hp-gas boiler (Hp-B) and gas boiler-resistance
heaters. Hp-B systems have been available commercially
for several years and were developed to lower investment
july/august 2018

compared to stand-alone Hp systems. However, hybrid heaters could offer electricity system benefits if connected in a
smart manner that enables the electricity system to access
the flexibility of the gas system by switching from the Hp to
the gas boiler whenever the electricity system is under stress,
which can include an extended period over several days.
Hybrid gas boiler-resistance heater systems could also provide the option to use excess renewable electricity by switching from gas to electricity.

System Integration
Widespread electrical heating can have a significant impact
on the overall system energy demand as well as on the shape
of that demand. High shares of direct electrical space heating
increase the winter system peak demand. on the other hand,
when combined with thermal storage, the electrical demand
can be shifted to off-peak hours, with minimal impact on
the peak, and with the additional advantage of increasing
baseload plant utilization in the off-peak hours. However,
as shares of variable renewable energy increase and the net
load becomes more variable and harder to forecast, smarter
controls and two-way communication are required to fully
take advantage of the thermal energy storage capacity.

Coupling Small-Scale Electric Heating
and Thermal Storage
Cooptimizing heating (combined with storage) and power
system scheduling could reduce overall system costs and
increase shares of variable renewable generation that can
be integrated. as discussed earlier, sets for both space
and water heating (i.e., resistive electrical heating combined with thermal storage) is currently being trialed in
the eu Horizon 2020 realValue project. a combination of
physical demonstrations in three winter peaking systems
(Ireland, germany, and latvia) along with detailed building and power system modeling will demonstrate how local
small-scale energy storage with advanced ICt, optimized
across the eu energy system, could bring benefits to all
market participants.
enormous benefits can be realized from the integration
of the power and heat energy systems. However, to adequately assess the scale and value of the flexibility that can be
accessed from the heat sector, detailed modeling is required
to consider the impact of any load shifting and demand
response activities on the end users. Cooptimized buildingto-grid models have been developed and refined as part of
ieee power & energy magazine

73



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - July/August 2018

Contents
IEEE Power & Energy Magazine - July/August 2018 - Cover1
IEEE Power & Energy Magazine - July/August 2018 - Cover2
IEEE Power & Energy Magazine - July/August 2018 - Contents
IEEE Power & Energy Magazine - July/August 2018 - 2
IEEE Power & Energy Magazine - July/August 2018 - 3
IEEE Power & Energy Magazine - July/August 2018 - 4
IEEE Power & Energy Magazine - July/August 2018 - 5
IEEE Power & Energy Magazine - July/August 2018 - 6
IEEE Power & Energy Magazine - July/August 2018 - 7
IEEE Power & Energy Magazine - July/August 2018 - 8
IEEE Power & Energy Magazine - July/August 2018 - 9
IEEE Power & Energy Magazine - July/August 2018 - 10
IEEE Power & Energy Magazine - July/August 2018 - 11
IEEE Power & Energy Magazine - July/August 2018 - 12
IEEE Power & Energy Magazine - July/August 2018 - 13
IEEE Power & Energy Magazine - July/August 2018 - 14
IEEE Power & Energy Magazine - July/August 2018 - 15
IEEE Power & Energy Magazine - July/August 2018 - 16
IEEE Power & Energy Magazine - July/August 2018 - 17
IEEE Power & Energy Magazine - July/August 2018 - 18
IEEE Power & Energy Magazine - July/August 2018 - 19
IEEE Power & Energy Magazine - July/August 2018 - 20
IEEE Power & Energy Magazine - July/August 2018 - 21
IEEE Power & Energy Magazine - July/August 2018 - 22
IEEE Power & Energy Magazine - July/August 2018 - 23
IEEE Power & Energy Magazine - July/August 2018 - 24
IEEE Power & Energy Magazine - July/August 2018 - 25
IEEE Power & Energy Magazine - July/August 2018 - 26
IEEE Power & Energy Magazine - July/August 2018 - 27
IEEE Power & Energy Magazine - July/August 2018 - 28
IEEE Power & Energy Magazine - July/August 2018 - 29
IEEE Power & Energy Magazine - July/August 2018 - 30
IEEE Power & Energy Magazine - July/August 2018 - 31
IEEE Power & Energy Magazine - July/August 2018 - 32
IEEE Power & Energy Magazine - July/August 2018 - 33
IEEE Power & Energy Magazine - July/August 2018 - 34
IEEE Power & Energy Magazine - July/August 2018 - 35
IEEE Power & Energy Magazine - July/August 2018 - 36
IEEE Power & Energy Magazine - July/August 2018 - 37
IEEE Power & Energy Magazine - July/August 2018 - 38
IEEE Power & Energy Magazine - July/August 2018 - 39
IEEE Power & Energy Magazine - July/August 2018 - 40
IEEE Power & Energy Magazine - July/August 2018 - 41
IEEE Power & Energy Magazine - July/August 2018 - 42
IEEE Power & Energy Magazine - July/August 2018 - 43
IEEE Power & Energy Magazine - July/August 2018 - 44
IEEE Power & Energy Magazine - July/August 2018 - 45
IEEE Power & Energy Magazine - July/August 2018 - 46
IEEE Power & Energy Magazine - July/August 2018 - 47
IEEE Power & Energy Magazine - July/August 2018 - 48
IEEE Power & Energy Magazine - July/August 2018 - 49
IEEE Power & Energy Magazine - July/August 2018 - 50
IEEE Power & Energy Magazine - July/August 2018 - 51
IEEE Power & Energy Magazine - July/August 2018 - 52
IEEE Power & Energy Magazine - July/August 2018 - 53
IEEE Power & Energy Magazine - July/August 2018 - 54
IEEE Power & Energy Magazine - July/August 2018 - 55
IEEE Power & Energy Magazine - July/August 2018 - 56
IEEE Power & Energy Magazine - July/August 2018 - 57
IEEE Power & Energy Magazine - July/August 2018 - 58
IEEE Power & Energy Magazine - July/August 2018 - 59
IEEE Power & Energy Magazine - July/August 2018 - 60
IEEE Power & Energy Magazine - July/August 2018 - 61
IEEE Power & Energy Magazine - July/August 2018 - 62
IEEE Power & Energy Magazine - July/August 2018 - 63
IEEE Power & Energy Magazine - July/August 2018 - 64
IEEE Power & Energy Magazine - July/August 2018 - 65
IEEE Power & Energy Magazine - July/August 2018 - 66
IEEE Power & Energy Magazine - July/August 2018 - 67
IEEE Power & Energy Magazine - July/August 2018 - 68
IEEE Power & Energy Magazine - July/August 2018 - 69
IEEE Power & Energy Magazine - July/August 2018 - 70
IEEE Power & Energy Magazine - July/August 2018 - 71
IEEE Power & Energy Magazine - July/August 2018 - 72
IEEE Power & Energy Magazine - July/August 2018 - 73
IEEE Power & Energy Magazine - July/August 2018 - 74
IEEE Power & Energy Magazine - July/August 2018 - 75
IEEE Power & Energy Magazine - July/August 2018 - 76
IEEE Power & Energy Magazine - July/August 2018 - 77
IEEE Power & Energy Magazine - July/August 2018 - 78
IEEE Power & Energy Magazine - July/August 2018 - 79
IEEE Power & Energy Magazine - July/August 2018 - 80
IEEE Power & Energy Magazine - July/August 2018 - 81
IEEE Power & Energy Magazine - July/August 2018 - 82
IEEE Power & Energy Magazine - July/August 2018 - 83
IEEE Power & Energy Magazine - July/August 2018 - 84
IEEE Power & Energy Magazine - July/August 2018 - 85
IEEE Power & Energy Magazine - July/August 2018 - 86
IEEE Power & Energy Magazine - July/August 2018 - 87
IEEE Power & Energy Magazine - July/August 2018 - 88
IEEE Power & Energy Magazine - July/August 2018 - 89
IEEE Power & Energy Magazine - July/August 2018 - 90
IEEE Power & Energy Magazine - July/August 2018 - 91
IEEE Power & Energy Magazine - July/August 2018 - 92
IEEE Power & Energy Magazine - July/August 2018 - 93
IEEE Power & Energy Magazine - July/August 2018 - 94
IEEE Power & Energy Magazine - July/August 2018 - 95
IEEE Power & Energy Magazine - July/August 2018 - 96
IEEE Power & Energy Magazine - July/August 2018 - 97
IEEE Power & Energy Magazine - July/August 2018 - 98
IEEE Power & Energy Magazine - July/August 2018 - 99
IEEE Power & Energy Magazine - July/August 2018 - 100
IEEE Power & Energy Magazine - July/August 2018 - 101
IEEE Power & Energy Magazine - July/August 2018 - 102
IEEE Power & Energy Magazine - July/August 2018 - 103
IEEE Power & Energy Magazine - July/August 2018 - 104
IEEE Power & Energy Magazine - July/August 2018 - 105
IEEE Power & Energy Magazine - July/August 2018 - 106
IEEE Power & Energy Magazine - July/August 2018 - 107
IEEE Power & Energy Magazine - July/August 2018 - 108
IEEE Power & Energy Magazine - July/August 2018 - 109
IEEE Power & Energy Magazine - July/August 2018 - 110
IEEE Power & Energy Magazine - July/August 2018 - 111
IEEE Power & Energy Magazine - July/August 2018 - 112
IEEE Power & Energy Magazine - July/August 2018 - 113
IEEE Power & Energy Magazine - July/August 2018 - 114
IEEE Power & Energy Magazine - July/August 2018 - 115
IEEE Power & Energy Magazine - July/August 2018 - 116
IEEE Power & Energy Magazine - July/August 2018 - 117
IEEE Power & Energy Magazine - July/August 2018 - 118
IEEE Power & Energy Magazine - July/August 2018 - 119
IEEE Power & Energy Magazine - July/August 2018 - 120
IEEE Power & Energy Magazine - July/August 2018 - 121
IEEE Power & Energy Magazine - July/August 2018 - 122
IEEE Power & Energy Magazine - July/August 2018 - 123
IEEE Power & Energy Magazine - July/August 2018 - 124
IEEE Power & Energy Magazine - July/August 2018 - 125
IEEE Power & Energy Magazine - July/August 2018 - 126
IEEE Power & Energy Magazine - July/August 2018 - 127
IEEE Power & Energy Magazine - July/August 2018 - 128
IEEE Power & Energy Magazine - July/August 2018 - 129
IEEE Power & Energy Magazine - July/August 2018 - 130
IEEE Power & Energy Magazine - July/August 2018 - 131
IEEE Power & Energy Magazine - July/August 2018 - 132
IEEE Power & Energy Magazine - July/August 2018 - Cover3
IEEE Power & Energy Magazine - July/August 2018 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com