Electronics Protection - Fall 2014 - (Page 6)

Feature Build Reliable Circuits Faster by Discovering the "Dirty Little Secrets" of ESD Protection Device Specifications Chad Marak, Director of Technical Marketing and TVS Diode Array Product Line, Littelfuse, Inc. Without sufficient protection, electronic devices have always been susceptible to damage from electrostatic discharge (ESD) or other overvoltage events. Today, unfortunately, these products have even less tolerance for DC voltages higher than 3.3 V, so an ESD pulse can prove catastrophic. A variety of factors contribute to this reduced voltage tolerance, including the smaller manufacturing geometries of today's most advanced ICs. The level of on-chip protection has also declined. However, perhaps the most significant factor is the enormous popularity of mobile devices like ultrabooks, tablets, smartphones, mp3 players, digital cameras, etc. Their mobile nature means they are used "on the go" in uncontrolled and potentially static-filled environments, with only the on-board circuit protection to safeguard them from an unexpected zap. Ensuring the longevity of these devices demands careful location and selection of appropriate ESD protection devices on the printed circuit board (PCB). An ESD protection device's main purpose is to provide the lowest resistance shunt path to ground during an overvoltage event or transient. Proper PCB layout/trace routing is critical to using ESD protection devices effectively. Even the most ideal protection solution can be rendered useless if the proper layout techniques aren't used. Perhaps the most common type of location error among new circuit designers is placing the ESD protection device "wherever it fits" on the board on the bus or data line to be protected, rather than taking the time to reorganize the board layout to allow placement of the device right at the port that's subject to ESD or electrical overstress condition. The selected device should be placed as close to the connector or button/switch being protected as is practicable. This will ensure that the ESD transient is clamped as soon as it enters the circuit. Also, the device should be installed as close as possible to the data/signal line as possible, avoiding stub traces if feasible. This will eliminate the potential for an inductive overshoot that would result in a voltage spike that could damage the circuitry.1 Obviously, however, choosing the right device is just as important as creating the optimum layout. Even though the specifications for the several of the same type of ESD device from different manufacturers may seem to indicate that they offer equivalent performance, it's not always safe to assume that they all provide the same degree of protection. Take the extra time necessary to review all specifications thoroughly, including all the associated footnotes, before deciding that a device is appropriate for a specific ESD protection application. That includes both the lists of electrical parameters and the plots outlining device performance. For example, in some vendors' data sheets, the plots illustrating a device's "clamping voltage" that show an ESD waveform often don't provide information that's particularly relevant to the concerns of circuit or hardware designers. In some cases, the clamping voltage of these devices is specified using ESD pulse levels far lower than the industry standard of 8 kV (such as 2 kV, 4 kV or 6 kV). Although the resulting waveform plot, or clamping voltage, may leave the reader with a positive impression of the device, a closer reading of the footnotes may reveal that the plot is irrelevant to a real-world application of a consumer using an electronic product. Here's one telltale sign of a spec that's just too good to be true. Check for specifications based non-relevant pulse waveforms, such 6 Fall 2014 * www.ElectronicsProtectionMagazine.com as the pulse waveform specified by the Human-Body Model [HBM] standard, which was originally developed as part of a MIL-STD-883, Method 3015.8, Electrostatic Discharge Sensitivity Classification. This standard is relevant only to the manufacturing environment with ESD grounding/wrist straps, etc., such as an IC on an assembly line. However, less scrupulous vendors may choose to use this HBM pulse during testing because it puts less energy (i.e., less current) through the protection device under test, which makes the resulting clamping voltage specification look much better. The relevant pulse waveform and standard for designing everyday ESD protection into electronic products comes from the International Electrotechnical Commission's IEC61000-4-2 standard. This standard is a system-level test that replicates a charged person discharging to electronic equipment in the end-user environment. The purpose of the system-level test is to ensure that finished products can survive normal operation. It assumes that the product's user won't take any precautions to lower ESD stress. When evaluating the clamping voltage of a device claimed to be measured under an IEC61000-4-2 waveform, be aware that less-scrupulous vendors might provide a plot indicating a low clamping voltage but won't note the size of the external attenuator they used between the DUT and the oscilloscope to obtain the plot. Without this attenuator information, there's no way to interpret the numbers associated with the waveform plot accurately. Look for notes like "A 10x attenuator was used" so you'll know what to multiply the numbers in the plot by to assess the device's actual response to an ESD pulse unless noted that the attenuation correction has already been done. Be on the lookout for disconnects between the information in the plots and the electrical characteristics. Usually, any "fudging" goes on in the plots. Figure 1 is an example of one vendor's "overshoot and clamping plot," which purports to show the result of an ESD test pulse of 25 kV with a 1/30 nanosecond waveshape. The waveshape does not directly relate to any standard ESD pulse from either the IEC or HBM standard. It could be used to approximate either standard, but the reader would have to know which one because the amount of energy is so different between the two. Figure 1. A misleading overshoot and clamping plot. The 30 nanosecond point (the 50 percent point of the fall time) is also atypical. This is typically how a lightning pulse is stated and, therefore, the test pulse being used may not have as much energy as a standard IEC pulse and is not directly comparable on a one- http://www.ElectronicsProtectionMagazine.com

Table of Contents for the Digital Edition of Electronics Protection - Fall 2014

Editor's Choice
Turn up the Heat and Chill Out: How IT Executives Can Reduce Data Center Cooling Costs
Build Reliable Circuits Faster by Discovering the "Dirty Little Secrets" of ESD Protection Device Specifications
About MicroTCA 4.0: A High-Performance Architecture with I/O and Signal Conditioning Provisions
LED Thermal Management: Passive Solutions for High Heat Plux Applications
Minimizing CPU Overheating with Liquid Cooling
EMI/EMC/RFI
Enclosures
Thermal
Power
Hardware
Contamination
Industry News
Calendar of Events

Electronics Protection - Fall 2014

https://www.nxtbook.com/nxtbooks/webcom/ep_2017summer
https://www.nxtbook.com/nxtbooks/webcom/ep_2017spring
https://www.nxtbook.com/nxtbooks/webcom/ep_2017winter
https://www.nxtbook.com/nxtbooks/webcom/ep_2016fall
https://www.nxtbook.com/nxtbooks/webcom/ep_2016summer
https://www.nxtbook.com/nxtbooks/webcom/ep_2016spring
https://www.nxtbook.com/nxtbooks/webcom/ep_2015winter
https://www.nxtbook.com/nxtbooks/webcom/ep_2015fall
https://www.nxtbook.com/nxtbooks/webcom/ep_2015summer
https://www.nxtbook.com/nxtbooks/webcom/ep_2015spring
https://www.nxtbook.com/nxtbooks/webcom/ep_2014winter
https://www.nxtbook.com/nxtbooks/webcom/ep_2014fall
https://www.nxtbook.com/nxtbooks/webcom/ep_2014summer
https://www.nxtbook.com/nxtbooks/webcom/ep_2014spring
https://www.nxtbook.com/nxtbooks/webcom/ep_20140102
https://www.nxtbook.com/nxtbooks/webcom/ep_20131112
https://www.nxtbook.com/nxtbooks/webcom/ep_20130910
https://www.nxtbook.com/nxtbooks/webcom/ep_20130708
https://www.nxtbook.com/nxtbooks/webcom/ep_20130506
https://www.nxtbook.com/nxtbooks/webcom/ep_20130304
https://www.nxtbook.com/nxtbooks/webcom/ep_20130102
https://www.nxtbook.com/nxtbooks/webcom/ep_20121112
https://www.nxtbook.com/nxtbooks/webcom/ep_20120910
https://www.nxtbook.com/nxtbooks/webcom/ep_20120607
https://www.nxtbook.com/nxtbooks/webcom/ep_20120304
https://www.nxtbook.com/nxtbooks/webcom/ep_20120102
https://www.nxtbook.com/nxtbooks/webcom/ep_20111112
https://www.nxtbook.com/nxtbooks/webcom/ep_20110910
https://www.nxtbook.com/nxtbooks/webcom/ep_20110607
https://www.nxtbookmedia.com