Magnetics Business & Technology - Spring 2012 - (Page 11)

MAGNETS • MATERIALS • MEASUREMENT New Customer Programmable Linear Hall-Effect Sensor IC the Hall element. Hall element offset is normally caused by device over molding, temperature dependencies and thermal stress. The high-frequency offset cancellation (chopping) clock allows for a greater sampling rate, which increases the accuracy of the output signal and results in faster signal processing capability. The A1357 sensor IC is targeted at the automotive and industrial markets and is provided in a lead (Pb) free, 3-pin, single inline package (KB suffix), with 100 percent matte tin leadframe plating. It is priced at $1.50 in quantities of 1,000. Allegro MicroSystems, Inc. has introduced a new linear Halleffect sensor IC with an ambient temperature range of 40°C to 150°C. Allegro’s A1357 device is a high precision, customer programmable, Halleffect linear IC with a pulse width modulated (PWM), current sourced (2-wire) output. The duty cycle (DC) of the PWM output signal (freq: 1 kHz) is proportional to an applied magnetic field. The device converts an analog signal from its internal Hall sensor element to a digitally encoded PWM output signal. The coupled noise immunity of the digitally encoded PWM output is improved compared to the noise immunity of an analog output signal. The BiCMOS, monolithic circuit inside of the A1357 integrates a Hall element, precision temperature-compensating circuitry to reduce the intrinsic sensitivity and offset drift of the Hall element, a small-signal high-gain amplifier, proprietary dynamic offset cancellation circuits and PWM conversion circuitry. The dynamic offset cancellation circuits reduce the residual offset voltage of New 4 to 20 mA Output Hall Effect Precision Sensors Now Available API Technologies Corp. (API) has released a new output option for its Spectrum Sensors line of H009 Hall Effect Position Sensors. The 4 to 20 mA output option joins the existing H009 series with Analog, PWR and Serial output options. Hall Effect Position Sensors convert relative changes in a magnetic field into an electrical signal to provide position change information. MMM continues on pAge 14 Magnetic measurement Go where no one has gone before! Choose the world’s most compact 3-axis Hall magnetometer and get highaccuracy measurements of previously inaccessible magnetic fields! The latest addition to the family, the THM1176 High Field Compact model, has a probe thinner than a climber’s fingernail. The THM1176 Low Field model, on the other hand, is ideal for measuring disturbances involving weak magnetic fields. All models include a USB interface, standard communication protocols, a full-featured instrument command set, turnkey operation on PC or Mac, and easy programmability Pantone 286 Pantone 032LabVIEW. via The 3-axis Hall Magnetometer TMH1176 family High Field model Low Field model High Field Compact model www.metrolab.com Magnetic precision has a name www.MagneticsMagazine.com annonce187x121.indd 2 26/07/10 15:11 Spring 2012 • Magnetics Business & Technology 11 http://www.metrolab.com http://www.metrolab.com http://www.MagneticsMagazine.com

Table of Contents for the Digital Edition of Magnetics Business & Technology - Spring 2012

Magnetics Business & Technology - Spring 2012
Editor’s Choice
Ten Steps for Developing the Kipawa Heavy Rare Earth Deposit
Designing New Magnet Technology - A Multiphysics Challenge
Magnets • Materials • Measurement
Four-Pole Technique for EMI Filter Design
Application • Component Developments
Research & Development
Industry News
Marketplace
Spontaneous Thoughts: The Golden Rule for Writers

Magnetics Business & Technology - Spring 2012

https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019julyaug
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019janfeb
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011summer
https://www.nxtbookmedia.com