EDNE December 2012 - (Page 37)

designideas readerS SOLVe deSIGN PrOBLeMS Injection-lock a Wien-bridge oscillator Glen Brisebois, Linear Technology, Milpitas, CA DIs Inside 40 Convert your smartphone into a ↘ I recently had the opportunity to investigate a new micropower 6-MHz LTC6255 op amp driving a 12-bit, 250k sample/sec LTC2361 ADC. I wanted to acquire the FFT of a pure sinusoid of about 5 kHz. The problem is that getting the FFT of a pure sinusoid requires, well, a pure sinusoid. Most programmable signal generators, however, have fairly poor noise and distortion performance, not to mention digital “hash” floors, compared with dedicated op amps and good ADCs. You can’t measure 90-dB distortion and noise using sources that are “60 dB-ish.” So rather than try to find and keep an almost-ideal programmable signal generator, I decided to build up a low-distor- 0.02 F FILM 1.62k 1.62k + 0.02 F FILM 15V CHRISTMAS LAMP C7 120V 5W LT1468-2 − –15V 1.24k (ADJUST FOR AMPLITUDE) 100 Figure 1 This Meacham-lightbulbstabilized, low-distortion, low-noise 5-kHz Wien-bridge sinusoidal oscillator’s RC feedback network attenuates by a factor of 3 at its midband. The bulb’s self-heating forces a gain of 3 in the op amp. tion Meacham-bulb-stabilized Wienbridge oscillator using an ultralow-distortion LT1468-2 op amp (Figure 1). The lightbulb amplitude-stabilization technique relies on the positive temperature coefficient of the bulb impedance stabilizing the gain of the op amp to match the attenuation factor of 3 in the Wien bridge at its center frequency. As the output amplitude increases, the bulb filament heats up, increasing the impedance and reducing the gain and, therefore, the amplitude. I did not have immediate access to the usually calledfor 327 lamp, so I decided to try a fairly low-power, high-voltage bulb, like the C7 Christmas bulb shown. At room temperature, it measured 316Ω; fresh out of the freezer (about −15°C), it measured 270Ω. Based on the 5W, 120V spec, it should be about 2.8k at white hot. That seemed like plenty of impedance range to stabilize a gain of 3, so I decided to linearize it a bit with a series 100Ω resistor. For a gain of 3, the bulb plus 100Ω must be half of the 1.24k feedback (or equal to 612Ω), so the bulb must settle at 512Ω. Roughly calculating a resistance temperature coefficient of (316–270Ω)/ [25−(−15°C)]=1.15Ω/°C means that the bulb filament will be about 195°C. The oscillator powered up fine, giving a nice sinusoidal 5.15-kHz output at several volts, and independent measurements showed the second- and thirdharmonic distortion products to be lower than −120 dBc. I applied the oscillator to the LTC6255 op-amp input after blocking and adjusting the dc level and ac amplitude, using the caps and pots as shown in Figure 2. The ac amplitude was adjusted for −1 dBFS, and the dc level was adjusted to center the signal within the ADC range. But, of course, this oscillator pedometer and tracking device ▶To see all of EDN’s Design Ideas, visit www.edn.com/designideas was purely analog and had no “10-MHz reference input” on the back to allow it to be synchronized with the ADC clock. The result is substantial spectral leakage in the FFT, so that it looks more like a circus tent than a single spike. Applying a 92-dB Blackman-Harris window to the data to reduce FFT leakage produced a fine-looking FFT (Figure 3). Although this FFT is accurate in some ways, a closer inspection reveals some problems. For example, the input signal is −1 dBFS, but it certainly looks graphically lower than −1 dB down. The reason is that even an excellent windowing function leaves some of the fundamental power in the frequency bins adjacent to the main spike. The software includes these bins in its power calculations, and rightly so, but the fact is that the spike looks too low to make a good photograph. The same can be said about the height of the harmonics; although they are calculated correctly and are accurate relative to the fundamental, they also look too low in absolute terms. So windowing is no substitute for a coherent phase-locked system. When those objections were raised, I despaired that I was going to have to return to the drawing board and maybe stay there, or find a locked oscillator with low distortion and noise or with awesome postfiltering. How could I ever make such a fundamentally analog oscillator coherent to an FFT bin in such an overwhelmingly digital www.edn-europe.com EDN DI5291 Fig 1.eps DIANE december 2012 | EDN EuropE 37 http://www.edn.com/designideas http://www.edn-europe.com

Table of Contents for the Digital Edition of EDNE December 2012

Cover
Contents
Texas Instruments Europe
Microchip
Digi-Key
Masthead
EDN comment
Pulse
Digi-Key
Baker’s Best
Embedded World 2013
Test & Measurement World
Rohde & Schwarz
Digi-Key
Squeezing the most from battery cells with a switched-mode pump
Signal integrity
Processor architectures : one to rule them all ?
Digi-Key
Mechatronics in Design
Advances in wireless speaker performance and technology
Design Ideas
Teardown; the ultimate Consumer Product ?
Product roundup
Tales from the Cube

EDNE December 2012

EDNE December 2012 - Cover (Page 1)
EDNE December 2012 - Contents (Page 2)
EDNE December 2012 - Texas Instruments Europe (Page 3)
EDNE December 2012 - Microchip (Page 4)
EDNE December 2012 - Digi-Key (Page 5)
EDNE December 2012 - Masthead (Page 6)
EDNE December 2012 - EDN comment (Page 7)
EDNE December 2012 - Pulse (Page 8)
EDNE December 2012 - Pulse (Page 9)
EDNE December 2012 - Pulse (Page 10)
EDNE December 2012 - Digi-Key (Page 11)
EDNE December 2012 - Digi-Key (Page 12)
EDNE December 2012 - Digi-Key (Page 13)
EDNE December 2012 - Baker’s Best (Page 14)
EDNE December 2012 - Embedded World 2013 (Page 15)
EDNE December 2012 - Test & Measurement World (Page 16)
EDNE December 2012 - Rohde & Schwarz (Page 17)
EDNE December 2012 - Rohde & Schwarz (Page 18)
EDNE December 2012 - Digi-Key (Page 19)
EDNE December 2012 - Digi-Key (Page 20)
EDNE December 2012 - Squeezing the most from battery cells with a switched-mode pump (Page 21)
EDNE December 2012 - Squeezing the most from battery cells with a switched-mode pump (Page 22)
EDNE December 2012 - Squeezing the most from battery cells with a switched-mode pump (Page 23)
EDNE December 2012 - Squeezing the most from battery cells with a switched-mode pump (Page 24)
EDNE December 2012 - Signal integrity (Page 25)
EDNE December 2012 - Processor architectures : one to rule them all ? (Page 26)
EDNE December 2012 - Processor architectures : one to rule them all ? (Page 27)
EDNE December 2012 - Processor architectures : one to rule them all ? (Page 28)
EDNE December 2012 - Digi-Key (Page 29)
EDNE December 2012 - Digi-Key (Page 30)
EDNE December 2012 - Digi-Key (Page 31)
EDNE December 2012 - Digi-Key (Page 32)
EDNE December 2012 - Mechatronics in Design (Page 33)
EDNE December 2012 - Advances in wireless speaker performance and technology (Page 34)
EDNE December 2012 - Advances in wireless speaker performance and technology (Page 35)
EDNE December 2012 - Advances in wireless speaker performance and technology (Page 36)
EDNE December 2012 - Design Ideas (Page 37)
EDNE December 2012 - Design Ideas (Page 38)
EDNE December 2012 - Design Ideas (Page 39)
EDNE December 2012 - Design Ideas (Page 40)
EDNE December 2012 - Teardown; the ultimate Consumer Product ? (Page 41)
EDNE December 2012 - Product roundup (Page 42)
EDNE December 2012 - Product roundup (Page 43)
EDNE December 2012 - Tales from the Cube (Page 44)
https://www.nxtbook.com/reedbusiness/edne/2013EDNEFebruary
https://www.nxtbook.com/reedbusiness/edne/2013EDNJanuary
https://www.nxtbook.com/reedbusiness/edne/2012EDNEDecember
https://www.nxtbook.com/reedbusiness/edne/2012EDNENovember
https://www.nxtbook.com/reedbusiness/edne/2012EDNEOctober
https://www.nxtbook.com/reedbusiness/edne/2012EDNESeptember
https://www.nxtbook.com/reedbusiness/edne/2012EDNEAugust
https://www.nxtbook.com/reedbusiness/edne/2012EDNEJuly
https://www.nxtbook.com/reedbusiness/edne/2012EDNEJuin
https://www.nxtbook.com/reedbusiness/edne/2012EDNEMay
https://www.nxtbook.com/reedbusiness/edne/2012EDNEApril
https://www.nxtbookmedia.com