Instrumentation & Measurement Magazine 25-3 - 27

Fig. 7 shows the convergence
of the external
quantum efficiency and internal
quantum efficiency
of the reference solar cell
using two systems (a double
monochromator and
differential SR).
Table 3 shows the reference
solar cell's uncertainty
budgets at a particular
wavelength of 600 nm. The
results show that the relative
expanded uncertainty
due to the reference cells'
internal quantum and external
quantum efficiencies
using a double monochromator
device converges to
the expanded uncertainty
using the DSR method.
NIS's set-up for
Pyranometer
Calibration
The RKP-575 Pyro-electric
is used as a reference
pyrometer to calibrate the
CMP6 pyranometer. Fig. 8
shows the Kipp & Zonen
model CMP6 pyranometer
calibration results at
different irradiance levels
(200 W/m2
and 1000 W/m2
, 800 W/m2
). The un,
certainty
budget related to
the calibration of the CMP6
has been estimated and reported.
Table 4 shows the
uncertainty budget of the
detector-based calibration
of the CMP6 pyranometer
at 800 W/m2
.
Fig. 7. Comparing the internal quantum and external quantum efficiencies of a reference solar cell using NIS's spectral
responsivity facility and DSR system.
Table 3 - Uncertainty budget for the measurement external and internal
quantum efficiencies of reference cell using DSR method at 600 nm
Uncertainty components
Solar cell repeatability
Reference photodiode detector repeatability
Reference photodiode detector calibration
Non-linearity of the photodiode detector
Adrift of the photodiode detector
Resolution of spectrophotometer
The reflectance repeatability of a reference solar cell
The resolution of optical power meter for cell
Instability of the lamp
Combined uncertainty (%) (k=1)
Expanded uncertainty (%) (k=2)
Conclusion
This research article presented an example of a low-cost system
to measure and test solar cells, photovoltaic devices,
and pyranometers. Through the results, this new system
proved to be effective and provide accurate results. This
research aims to establish alternative methods for measuring
and testing solar cells through the hybrid system for
measuring the spectral response of photovoltaic cells. The
results were compared using the National Institute of Standards
(NIS) spectral responsivity system. The measurement
of the spectral responsivity and quantum efficiency of reference
solar cells using two techniques is converged with each
May 2022
Probability distribution Value (%)
1.15×10−8
Normal
Normal
Normal
Rectangular
Rectangular
Rectangular
Normal
Rectangular
Normal
3.12×10−8
0.5
5×10−6
1.036×10−3
4.81×10−5
7.37×10−2
2.78×10−4
3.27×10−2
0.51
1.01
Fig. 8. The sensitivity of the CMP6 pyranometer at different irradiance levels;
the error bars present the uncertainty values.
IEEE Instrumentation & Measurement Magazine
27

Instrumentation & Measurement Magazine 25-3

Table of Contents for the Digital Edition of Instrumentation & Measurement Magazine 25-3

Instrumentation & Measurement Magazine 25-3 - Cover1
Instrumentation & Measurement Magazine 25-3 - Cover2
Instrumentation & Measurement Magazine 25-3 - 1
Instrumentation & Measurement Magazine 25-3 - 2
Instrumentation & Measurement Magazine 25-3 - 3
Instrumentation & Measurement Magazine 25-3 - 4
Instrumentation & Measurement Magazine 25-3 - 5
Instrumentation & Measurement Magazine 25-3 - 6
Instrumentation & Measurement Magazine 25-3 - 7
Instrumentation & Measurement Magazine 25-3 - 8
Instrumentation & Measurement Magazine 25-3 - 9
Instrumentation & Measurement Magazine 25-3 - 10
Instrumentation & Measurement Magazine 25-3 - 11
Instrumentation & Measurement Magazine 25-3 - 12
Instrumentation & Measurement Magazine 25-3 - 13
Instrumentation & Measurement Magazine 25-3 - 14
Instrumentation & Measurement Magazine 25-3 - 15
Instrumentation & Measurement Magazine 25-3 - 16
Instrumentation & Measurement Magazine 25-3 - 17
Instrumentation & Measurement Magazine 25-3 - 18
Instrumentation & Measurement Magazine 25-3 - 19
Instrumentation & Measurement Magazine 25-3 - 20
Instrumentation & Measurement Magazine 25-3 - 21
Instrumentation & Measurement Magazine 25-3 - 22
Instrumentation & Measurement Magazine 25-3 - 23
Instrumentation & Measurement Magazine 25-3 - 24
Instrumentation & Measurement Magazine 25-3 - 25
Instrumentation & Measurement Magazine 25-3 - 26
Instrumentation & Measurement Magazine 25-3 - 27
Instrumentation & Measurement Magazine 25-3 - 28
Instrumentation & Measurement Magazine 25-3 - 29
Instrumentation & Measurement Magazine 25-3 - 30
Instrumentation & Measurement Magazine 25-3 - 31
Instrumentation & Measurement Magazine 25-3 - 32
Instrumentation & Measurement Magazine 25-3 - 33
Instrumentation & Measurement Magazine 25-3 - 34
Instrumentation & Measurement Magazine 25-3 - 35
Instrumentation & Measurement Magazine 25-3 - 36
Instrumentation & Measurement Magazine 25-3 - 37
Instrumentation & Measurement Magazine 25-3 - 38
Instrumentation & Measurement Magazine 25-3 - 39
Instrumentation & Measurement Magazine 25-3 - 40
Instrumentation & Measurement Magazine 25-3 - 41
Instrumentation & Measurement Magazine 25-3 - 42
Instrumentation & Measurement Magazine 25-3 - 43
Instrumentation & Measurement Magazine 25-3 - 44
Instrumentation & Measurement Magazine 25-3 - 45
Instrumentation & Measurement Magazine 25-3 - 46
Instrumentation & Measurement Magazine 25-3 - 47
Instrumentation & Measurement Magazine 25-3 - 48
Instrumentation & Measurement Magazine 25-3 - 49
Instrumentation & Measurement Magazine 25-3 - 50
Instrumentation & Measurement Magazine 25-3 - 51
Instrumentation & Measurement Magazine 25-3 - 52
Instrumentation & Measurement Magazine 25-3 - 53
Instrumentation & Measurement Magazine 25-3 - 54
Instrumentation & Measurement Magazine 25-3 - 55
Instrumentation & Measurement Magazine 25-3 - 56
Instrumentation & Measurement Magazine 25-3 - 57
Instrumentation & Measurement Magazine 25-3 - 58
Instrumentation & Measurement Magazine 25-3 - 59
Instrumentation & Measurement Magazine 25-3 - 60
Instrumentation & Measurement Magazine 25-3 - 61
Instrumentation & Measurement Magazine 25-3 - 62
Instrumentation & Measurement Magazine 25-3 - 63
Instrumentation & Measurement Magazine 25-3 - 64
Instrumentation & Measurement Magazine 25-3 - 65
Instrumentation & Measurement Magazine 25-3 - 66
Instrumentation & Measurement Magazine 25-3 - 67
Instrumentation & Measurement Magazine 25-3 - 68
Instrumentation & Measurement Magazine 25-3 - 69
Instrumentation & Measurement Magazine 25-3 - 70
Instrumentation & Measurement Magazine 25-3 - 71
Instrumentation & Measurement Magazine 25-3 - 72
Instrumentation & Measurement Magazine 25-3 - 73
Instrumentation & Measurement Magazine 25-3 - 74
Instrumentation & Measurement Magazine 25-3 - 75
Instrumentation & Measurement Magazine 25-3 - Cover3
Instrumentation & Measurement Magazine 25-3 - Cover4
https://www.nxtbook.com/allen/iamm/26-6
https://www.nxtbook.com/allen/iamm/26-5
https://www.nxtbook.com/allen/iamm/26-4
https://www.nxtbook.com/allen/iamm/26-3
https://www.nxtbook.com/allen/iamm/26-2
https://www.nxtbook.com/allen/iamm/26-1
https://www.nxtbook.com/allen/iamm/25-9
https://www.nxtbook.com/allen/iamm/25-8
https://www.nxtbook.com/allen/iamm/25-7
https://www.nxtbook.com/allen/iamm/25-6
https://www.nxtbook.com/allen/iamm/25-5
https://www.nxtbook.com/allen/iamm/25-4
https://www.nxtbook.com/allen/iamm/25-3
https://www.nxtbook.com/allen/iamm/instrumentation-measurement-magazine-25-2
https://www.nxtbook.com/allen/iamm/25-1
https://www.nxtbook.com/allen/iamm/24-9
https://www.nxtbook.com/allen/iamm/24-7
https://www.nxtbook.com/allen/iamm/24-8
https://www.nxtbook.com/allen/iamm/24-6
https://www.nxtbook.com/allen/iamm/24-5
https://www.nxtbook.com/allen/iamm/24-4
https://www.nxtbook.com/allen/iamm/24-3
https://www.nxtbook.com/allen/iamm/24-2
https://www.nxtbook.com/allen/iamm/24-1
https://www.nxtbook.com/allen/iamm/23-9
https://www.nxtbook.com/allen/iamm/23-8
https://www.nxtbook.com/allen/iamm/23-6
https://www.nxtbook.com/allen/iamm/23-5
https://www.nxtbook.com/allen/iamm/23-2
https://www.nxtbook.com/allen/iamm/23-3
https://www.nxtbook.com/allen/iamm/23-4
https://www.nxtbookmedia.com