Instrumentation & Measurement Magazine 25-5 - 33

long-distance time comparison
experiments were
carried out.
Analysis of
the Pseudorange
Multipath
Combination
Fig. 2. The principle of PPP time comparison.
In the positioning calculation
based on BDS, the
receiver antenna not only
receives the direct electromagnetic
signal transmitted
from the satellite but also receives
one or more reflected
electromagnetic signals
from the surrounding objects.
This increases the noise
levels of the receiver signal,
whereas the multipath error
in the measurement of
pseudo-range and carrier
phase is increased. Therefore,
the multipath error will
affect the results of PNT for
users. The relevant research
of BDS shows that the orbit
type, frequency and elevation-dependent,
etc. could
affect the code bias of BDS-2
satellites signals, and these
Items
Table 1 - The data processing model
Descriptions
Observation data
Sampling interval
Signal selection
Satellite orbit
Satellite clock
Ionospheric delay
Tropospheric delay
Elevation cut off
Receiver clock model
Receiver position model
Ocean tide loading
Calculate the result
August 2022
Pseudo-range and phase
observation data
30s
B1C and B2a
Products from GFZ
Products from GFZ
Ionosphere-free
combination
UNB3m+ random walk
model [14,15]
10°
White noise
Static
Model Corrected
Extended Kalman filter
estimation
biases can cause the code-phase divergence to exceed 1 m [17].
In the multipath calculation, the error effect by multipath
noise can be estimated by pseudo-range P and phase φ observations,
and the model can be described in (14) as follows [18]:
22
MP  
i 22 22 j j
ij ij
ff f2
 
f f ff

ij

i i

where MP is the code multipath combined observation and the
subscripts i and j represent the carrier frequency. Bij
2 j
  P Bij
i
(14)
is the carrier
phase ambiguity including the hardware delay.
This research used the pseudo-range and carrier phase observation
of frequency B1I, B2I based on BDS-2, and new signal
frequency B1C, B2a based on BDS-3 within 300 s sampling interval
at NTSC on July 3, 2020. The BDS signal code multipath
noise was analysed using (12). Table 2 shows the information
of different frequency signals of BDS-2 and BDS-3.
Fig. 3 and Fig. 4 show the multipath noise at different frequencies
for all BDS observation data in one day. Here, we
selected all the BDS-2 satellites (satellite identification<=16,
the frequency were B1I and B2I) and BDS-3 satellites (satellite
identification>=19, the frequency were B1C and B2a) that were
observed on July 3, 2020 for statistical analysis. In data processing,
the cycle slip detection and repair method were used to
ensure the continuity of the data segment.
IEEE Instrumentation & Measurement Magazine
33

Instrumentation & Measurement Magazine 25-5

Table of Contents for the Digital Edition of Instrumentation & Measurement Magazine 25-5

Instrumentation & Measurement Magazine 25-5 - Cover1
Instrumentation & Measurement Magazine 25-5 - Cover2
Instrumentation & Measurement Magazine 25-5 - 1
Instrumentation & Measurement Magazine 25-5 - 2
Instrumentation & Measurement Magazine 25-5 - 3
Instrumentation & Measurement Magazine 25-5 - 4
Instrumentation & Measurement Magazine 25-5 - 5
Instrumentation & Measurement Magazine 25-5 - 6
Instrumentation & Measurement Magazine 25-5 - 7
Instrumentation & Measurement Magazine 25-5 - 8
Instrumentation & Measurement Magazine 25-5 - 9
Instrumentation & Measurement Magazine 25-5 - 10
Instrumentation & Measurement Magazine 25-5 - 11
Instrumentation & Measurement Magazine 25-5 - 12
Instrumentation & Measurement Magazine 25-5 - 13
Instrumentation & Measurement Magazine 25-5 - 14
Instrumentation & Measurement Magazine 25-5 - 15
Instrumentation & Measurement Magazine 25-5 - 16
Instrumentation & Measurement Magazine 25-5 - 17
Instrumentation & Measurement Magazine 25-5 - 18
Instrumentation & Measurement Magazine 25-5 - 19
Instrumentation & Measurement Magazine 25-5 - 20
Instrumentation & Measurement Magazine 25-5 - 21
Instrumentation & Measurement Magazine 25-5 - 22
Instrumentation & Measurement Magazine 25-5 - 23
Instrumentation & Measurement Magazine 25-5 - 24
Instrumentation & Measurement Magazine 25-5 - 25
Instrumentation & Measurement Magazine 25-5 - 26
Instrumentation & Measurement Magazine 25-5 - 27
Instrumentation & Measurement Magazine 25-5 - 28
Instrumentation & Measurement Magazine 25-5 - 29
Instrumentation & Measurement Magazine 25-5 - 30
Instrumentation & Measurement Magazine 25-5 - 31
Instrumentation & Measurement Magazine 25-5 - 32
Instrumentation & Measurement Magazine 25-5 - 33
Instrumentation & Measurement Magazine 25-5 - 34
Instrumentation & Measurement Magazine 25-5 - 35
Instrumentation & Measurement Magazine 25-5 - 36
Instrumentation & Measurement Magazine 25-5 - 37
Instrumentation & Measurement Magazine 25-5 - 38
Instrumentation & Measurement Magazine 25-5 - 39
Instrumentation & Measurement Magazine 25-5 - 40
Instrumentation & Measurement Magazine 25-5 - 41
Instrumentation & Measurement Magazine 25-5 - 42
Instrumentation & Measurement Magazine 25-5 - 43
Instrumentation & Measurement Magazine 25-5 - 44
Instrumentation & Measurement Magazine 25-5 - 45
Instrumentation & Measurement Magazine 25-5 - 46
Instrumentation & Measurement Magazine 25-5 - 47
Instrumentation & Measurement Magazine 25-5 - 48
Instrumentation & Measurement Magazine 25-5 - 49
Instrumentation & Measurement Magazine 25-5 - 50
Instrumentation & Measurement Magazine 25-5 - 51
Instrumentation & Measurement Magazine 25-5 - 52
Instrumentation & Measurement Magazine 25-5 - 53
Instrumentation & Measurement Magazine 25-5 - 54
Instrumentation & Measurement Magazine 25-5 - 55
Instrumentation & Measurement Magazine 25-5 - 56
Instrumentation & Measurement Magazine 25-5 - 57
Instrumentation & Measurement Magazine 25-5 - 58
Instrumentation & Measurement Magazine 25-5 - 59
Instrumentation & Measurement Magazine 25-5 - 60
Instrumentation & Measurement Magazine 25-5 - 61
Instrumentation & Measurement Magazine 25-5 - 62
Instrumentation & Measurement Magazine 25-5 - 63
Instrumentation & Measurement Magazine 25-5 - 64
Instrumentation & Measurement Magazine 25-5 - 65
Instrumentation & Measurement Magazine 25-5 - 66
Instrumentation & Measurement Magazine 25-5 - 67
Instrumentation & Measurement Magazine 25-5 - Cover3
Instrumentation & Measurement Magazine 25-5 - Cover4
https://www.nxtbook.com/allen/iamm/26-6
https://www.nxtbook.com/allen/iamm/26-5
https://www.nxtbook.com/allen/iamm/26-4
https://www.nxtbook.com/allen/iamm/26-3
https://www.nxtbook.com/allen/iamm/26-2
https://www.nxtbook.com/allen/iamm/26-1
https://www.nxtbook.com/allen/iamm/25-9
https://www.nxtbook.com/allen/iamm/25-8
https://www.nxtbook.com/allen/iamm/25-7
https://www.nxtbook.com/allen/iamm/25-6
https://www.nxtbook.com/allen/iamm/25-5
https://www.nxtbook.com/allen/iamm/25-4
https://www.nxtbook.com/allen/iamm/25-3
https://www.nxtbook.com/allen/iamm/instrumentation-measurement-magazine-25-2
https://www.nxtbook.com/allen/iamm/25-1
https://www.nxtbook.com/allen/iamm/24-9
https://www.nxtbook.com/allen/iamm/24-7
https://www.nxtbook.com/allen/iamm/24-8
https://www.nxtbook.com/allen/iamm/24-6
https://www.nxtbook.com/allen/iamm/24-5
https://www.nxtbook.com/allen/iamm/24-4
https://www.nxtbook.com/allen/iamm/24-3
https://www.nxtbook.com/allen/iamm/24-2
https://www.nxtbook.com/allen/iamm/24-1
https://www.nxtbook.com/allen/iamm/23-9
https://www.nxtbook.com/allen/iamm/23-8
https://www.nxtbook.com/allen/iamm/23-6
https://www.nxtbook.com/allen/iamm/23-5
https://www.nxtbook.com/allen/iamm/23-2
https://www.nxtbook.com/allen/iamm/23-3
https://www.nxtbook.com/allen/iamm/23-4
https://www.nxtbookmedia.com