Instrumentation & Measurement Magazine 25-9 - 15

Fig. 5. Simulation of object localization with static sensor line for different object sizes located at different distances.
only one parameter (experiment of Holway and Boring [16]).
Thus, as in the simulation in Fig. 5, a small close object can obscure
a more distant larger object (both objects have the same
viewing angle). Therefore, even in electric object localization,
small objects in certain configurations cannot be distinguished
from larger objects using only the individual parameters of
slope and amplitude.
As a consequence, to discriminate distance from size based
on one given voltage profile, a functional dependence of slope
and amplitude can be used, as shown in Fig. 6. In Fig. 6a, the
vertical distance to the object is estimated. This can be done either
by the single features slope and amplitude, or, as shown
in the inset of Fig. 6a, with the S/A ratio feature. For the purpose
of completeness, the distance can also be estimated with
the FWHM feature (Fig. 4). The results in Fig. 6a are generated
with a highly abstracted simulation model of the weakly electric
fish to validate the previous published features (S/A ratio
[6] and FWHM [15]). In Fig. 6b, an object size can be estimated
with the help of the features maximum slope and amplitude
of the symmetrical voltage profile. The features simulated in
Fig. 6a and Fig. 6b result in a family of curves, which never
December 2022
cross each other and thus are unique for an object distance and
size, i.e., in Fig. 6b only one pair of amplitude and slope exist
for a given radius. Therefore, the distance and size of an object
can be estimated with a static sensor line and symmetrical
voltage profile.
Object Localization with Moving
Sensor Line
This section introduces a sensor line which moves along an
object which is assumed to be static in space. The distance covered
during the sensor movement is unknown in principle
but must be long enough (complete) to finalize the localization
process. The definition of completeness of the localization
process, in this context, is based on the temporal change of the
voltage profile on the sensor line during the sensor movement.
Complete means that the peak of the voltage profile appears
after the start of the measurement and disappears before the
end of the measurement.
Therefore, a sensor movement has to start far to the left of
the object and ends far to its right (Fig. 3c). In Fig. 3d, a local
peak is measured for the first time at a certain sensor position
IEEE Instrumentation & Measurement Magazine
15

Instrumentation & Measurement Magazine 25-9

Table of Contents for the Digital Edition of Instrumentation & Measurement Magazine 25-9

Instrumentation & Measurement Magazine 25-9 - Cover1
Instrumentation & Measurement Magazine 25-9 - Cover2
Instrumentation & Measurement Magazine 25-9 - 1
Instrumentation & Measurement Magazine 25-9 - 2
Instrumentation & Measurement Magazine 25-9 - 3
Instrumentation & Measurement Magazine 25-9 - 4
Instrumentation & Measurement Magazine 25-9 - 5
Instrumentation & Measurement Magazine 25-9 - 6
Instrumentation & Measurement Magazine 25-9 - 7
Instrumentation & Measurement Magazine 25-9 - 8
Instrumentation & Measurement Magazine 25-9 - 9
Instrumentation & Measurement Magazine 25-9 - 10
Instrumentation & Measurement Magazine 25-9 - 11
Instrumentation & Measurement Magazine 25-9 - 12
Instrumentation & Measurement Magazine 25-9 - 13
Instrumentation & Measurement Magazine 25-9 - 14
Instrumentation & Measurement Magazine 25-9 - 15
Instrumentation & Measurement Magazine 25-9 - 16
Instrumentation & Measurement Magazine 25-9 - 17
Instrumentation & Measurement Magazine 25-9 - 18
Instrumentation & Measurement Magazine 25-9 - 19
Instrumentation & Measurement Magazine 25-9 - 20
Instrumentation & Measurement Magazine 25-9 - 21
Instrumentation & Measurement Magazine 25-9 - 22
Instrumentation & Measurement Magazine 25-9 - 23
Instrumentation & Measurement Magazine 25-9 - 24
Instrumentation & Measurement Magazine 25-9 - 25
Instrumentation & Measurement Magazine 25-9 - 26
Instrumentation & Measurement Magazine 25-9 - 27
Instrumentation & Measurement Magazine 25-9 - 28
Instrumentation & Measurement Magazine 25-9 - 29
Instrumentation & Measurement Magazine 25-9 - 30
Instrumentation & Measurement Magazine 25-9 - 31
Instrumentation & Measurement Magazine 25-9 - 32
Instrumentation & Measurement Magazine 25-9 - 33
Instrumentation & Measurement Magazine 25-9 - 34
Instrumentation & Measurement Magazine 25-9 - 35
Instrumentation & Measurement Magazine 25-9 - 36
Instrumentation & Measurement Magazine 25-9 - 37
Instrumentation & Measurement Magazine 25-9 - 38
Instrumentation & Measurement Magazine 25-9 - 39
Instrumentation & Measurement Magazine 25-9 - 40
Instrumentation & Measurement Magazine 25-9 - 41
Instrumentation & Measurement Magazine 25-9 - 42
Instrumentation & Measurement Magazine 25-9 - 43
Instrumentation & Measurement Magazine 25-9 - 44
Instrumentation & Measurement Magazine 25-9 - 45
Instrumentation & Measurement Magazine 25-9 - 46
Instrumentation & Measurement Magazine 25-9 - 47
Instrumentation & Measurement Magazine 25-9 - 48
Instrumentation & Measurement Magazine 25-9 - 49
Instrumentation & Measurement Magazine 25-9 - 50
Instrumentation & Measurement Magazine 25-9 - 51
Instrumentation & Measurement Magazine 25-9 - 52
Instrumentation & Measurement Magazine 25-9 - 53
Instrumentation & Measurement Magazine 25-9 - 54
Instrumentation & Measurement Magazine 25-9 - 55
Instrumentation & Measurement Magazine 25-9 - 56
Instrumentation & Measurement Magazine 25-9 - 57
Instrumentation & Measurement Magazine 25-9 - 58
Instrumentation & Measurement Magazine 25-9 - 59
Instrumentation & Measurement Magazine 25-9 - 60
Instrumentation & Measurement Magazine 25-9 - 61
Instrumentation & Measurement Magazine 25-9 - 62
Instrumentation & Measurement Magazine 25-9 - 63
Instrumentation & Measurement Magazine 25-9 - 64
Instrumentation & Measurement Magazine 25-9 - 65
Instrumentation & Measurement Magazine 25-9 - 66
Instrumentation & Measurement Magazine 25-9 - 67
Instrumentation & Measurement Magazine 25-9 - 68
Instrumentation & Measurement Magazine 25-9 - 69
Instrumentation & Measurement Magazine 25-9 - Cover3
Instrumentation & Measurement Magazine 25-9 - Cover4
https://www.nxtbook.com/allen/iamm/26-6
https://www.nxtbook.com/allen/iamm/26-5
https://www.nxtbook.com/allen/iamm/26-4
https://www.nxtbook.com/allen/iamm/26-3
https://www.nxtbook.com/allen/iamm/26-2
https://www.nxtbook.com/allen/iamm/26-1
https://www.nxtbook.com/allen/iamm/25-9
https://www.nxtbook.com/allen/iamm/25-8
https://www.nxtbook.com/allen/iamm/25-7
https://www.nxtbook.com/allen/iamm/25-6
https://www.nxtbook.com/allen/iamm/25-5
https://www.nxtbook.com/allen/iamm/25-4
https://www.nxtbook.com/allen/iamm/25-3
https://www.nxtbook.com/allen/iamm/instrumentation-measurement-magazine-25-2
https://www.nxtbook.com/allen/iamm/25-1
https://www.nxtbook.com/allen/iamm/24-9
https://www.nxtbook.com/allen/iamm/24-7
https://www.nxtbook.com/allen/iamm/24-8
https://www.nxtbook.com/allen/iamm/24-6
https://www.nxtbook.com/allen/iamm/24-5
https://www.nxtbook.com/allen/iamm/24-4
https://www.nxtbook.com/allen/iamm/24-3
https://www.nxtbook.com/allen/iamm/24-2
https://www.nxtbook.com/allen/iamm/24-1
https://www.nxtbook.com/allen/iamm/23-9
https://www.nxtbook.com/allen/iamm/23-8
https://www.nxtbook.com/allen/iamm/23-6
https://www.nxtbook.com/allen/iamm/23-5
https://www.nxtbook.com/allen/iamm/23-2
https://www.nxtbook.com/allen/iamm/23-3
https://www.nxtbook.com/allen/iamm/23-4
https://www.nxtbookmedia.com