BUILDING ENERGY - Fall 2017 - 24

FEATURE: RESILIENT BUILDINGS

ARE YOU FORGING
THE WEAKEST LINK?

T

he Resilient Design Institute defines
BY ALEX WILSON,
JIM NEWMAN,
resilience as "the capacity to adapt to
LEED AP O+M;
changing conditions and to maintain or
KATIE COURTNEY,
regain functionality and vitality in the face
AIA, LEED AP BD+C;
of stress or disturbance." In other words, it
AND MARCELL GRAEFF,
LEED AP BD+C
is the capacity to bounce back after a disturbance or
PEER REVIEWED BY
MATTHEW BRODERICK

familiar with, all designed before the credits came
out, as case studies to benchmark how the current
Standard of Care measures up to the LEED Pilot
Credits on Resilient Design. We found the Resilient
Design Pilot Credits require a rearrangement of the
design process, the same way that pursuing the
interruption - events like Hurricane Katrina (2005),
Living Building Challenge changes how design teams
Tropical Storm Irene (2011), Superstorm Sandy
approach materials selection. Resilient design requires
(2012) and the New England drought (2016). Now
that local conditions and history be incorporated at
that extreme weather events are becoming more
the earliest stages of design and that livability of
common, we need to determine how to adapt to
projects without power inputs be a primary design
these changes.
driver. This article looks at how each Pilot Credit works
Leadership to create new adaptation (or resilience) within current design methodologies and where our
standards is coming from many angles: government, design process needs to change.
insurance companies and zoning and building
rating systems, among others. As everyone tries
CREDIT IPpc98: PLANNING
to grapple with resilient design and what it means
IPpc98 Assessment and Planning for Resilience
to the building process, the LEED green building
involves identifying the hazards common to the
rating system has introduced three Pilot Credits on
project region and site. This credit encourages
Resilient Design in the Integrative Process category assessment and then planning for a wide range
(Figure 1). The credits are: IPpc98 Assessment
of natural disasters or disturbances as well as
and Planning for Resilience, IPpc99 Design for
consideration of longer-term trends affecting building
Enhanced Resilience and IPpc100 Design for Passive performance, such as changing climate conditions.
Survivability. The new suite of credits takes a broad The goal is to make sure that project teams are
approach, providing a holistic framework for design
aware of the specific natural and man-made
teams to begin tackling this important issue.
hazards that are most common to the project's
We wanted to consider how the new credits could
location, such as flooding, hurricanes, tornados/high
transform the way project teams plan and build their
winds, earthquakes, tsunami, wildfires, drought or
projects. We used three sample projects that we are
landslides/unstable soils. For each hazard the credit

FIGURE 1: A SCHEMATIC STRUCTURE OF THE PROPOSED LEED PILOT CREDITS ON RESILIENT DESIGN.
PHOTO CREDIT: JESSIE WOODCOCK, ZGF. UPDATED BY WILSON ARCHITECTS.

24 * BUILDINGENERGY VOL. 36 NO. 2 | FALL 2017



BUILDING ENERGY - Fall 2017

Table of Contents for the Digital Edition of BUILDING ENERGY - Fall 2017

From the Executive Director: A strategic plan for emerging professionals.
From the Board Chair: Taking flight into new territory.
What is Strategic Electrification? Simply Put, It’s an Energy Transformation: A core pathway to deep carbon reduction.
Better Steam Heat: Generating steam system upgrades in New York City.
Going All the Way:What it will really take to achieve net zero energy in Burlington, VT.
Are You Forging the Weakest Link?: A deeper dive into how the quest for resilience alters the design process.
Air Quality in Your Bedroom: Nighttime Carbon Dioxide Levels in the Bedrooms of 22 Vermont Homes: Can occupants of leaky houses breathe easy in their sleep?
Inclusive Diversity Key to Sustainability: Opinion: Sustainability planning must embrace diversity.
BuildingEnergy Bottom Lines: An interview with Jonathan Orpin.
High Performance Walls: Discover an alternative to traditional insulation methods that can reach superior insulation performance with thinner walls.
SAF®– A Solar Faade to Stay?: A technical overview of the newest attachment systems in the low-energy construction market.
NESEA Green Pages: This premier resource for sustainability professionals in the Northeast and beyond is just a few pages away. To have your business listed in next year’s Green Pages and become a NESEA business member today, visit nesea.org/join.
Index to Advertisers
BUILDING ENERGY - Fall 2017 - Intro
BUILDING ENERGY - Fall 2017 - cover1
BUILDING ENERGY - Fall 2017 - cover2
BUILDING ENERGY - Fall 2017 - 3
BUILDING ENERGY - Fall 2017 - 4
BUILDING ENERGY - Fall 2017 - 5
BUILDING ENERGY - Fall 2017 - From the Executive Director: A strategic plan for emerging professionals.
BUILDING ENERGY - Fall 2017 - 7
BUILDING ENERGY - Fall 2017 - From the Board Chair: Taking flight into new territory.
BUILDING ENERGY - Fall 2017 - 9
BUILDING ENERGY - Fall 2017 - What is Strategic Electrification? Simply Put, It’s an Energy Transformation: A core pathway to deep carbon reduction.
BUILDING ENERGY - Fall 2017 - 11
BUILDING ENERGY - Fall 2017 - 12
BUILDING ENERGY - Fall 2017 - 13
BUILDING ENERGY - Fall 2017 - 14
BUILDING ENERGY - Fall 2017 - 15
BUILDING ENERGY - Fall 2017 - Better Steam Heat: Generating steam system upgrades in New York City.
BUILDING ENERGY - Fall 2017 - 17
BUILDING ENERGY - Fall 2017 - 18
BUILDING ENERGY - Fall 2017 - 19
BUILDING ENERGY - Fall 2017 - INSERT1
BUILDING ENERGY - Fall 2017 - INSERT2
BUILDING ENERGY - Fall 2017 - Going All the Way:What it will really take to achieve net zero energy in Burlington, VT.
BUILDING ENERGY - Fall 2017 - 21
BUILDING ENERGY - Fall 2017 - 22
BUILDING ENERGY - Fall 2017 - 23
BUILDING ENERGY - Fall 2017 - Are You Forging the Weakest Link?: A deeper dive into how the quest for resilience alters the design process.
BUILDING ENERGY - Fall 2017 - 25
BUILDING ENERGY - Fall 2017 - 26
BUILDING ENERGY - Fall 2017 - 27
BUILDING ENERGY - Fall 2017 - 28
BUILDING ENERGY - Fall 2017 - 29
BUILDING ENERGY - Fall 2017 - Air Quality in Your Bedroom: Nighttime Carbon Dioxide Levels in the Bedrooms of 22 Vermont Homes: Can occupants of leaky houses breathe easy in their sleep?
BUILDING ENERGY - Fall 2017 - 31
BUILDING ENERGY - Fall 2017 - 32
BUILDING ENERGY - Fall 2017 - 33
BUILDING ENERGY - Fall 2017 - Inclusive Diversity Key to Sustainability: Opinion: Sustainability planning must embrace diversity.
BUILDING ENERGY - Fall 2017 - 35
BUILDING ENERGY - Fall 2017 - BuildingEnergy Bottom Lines: An interview with Jonathan Orpin.
BUILDING ENERGY - Fall 2017 - 37
BUILDING ENERGY - Fall 2017 - High Performance Walls: Discover an alternative to traditional insulation methods that can reach superior insulation performance with thinner walls.
BUILDING ENERGY - Fall 2017 - 39
BUILDING ENERGY - Fall 2017 - 40
BUILDING ENERGY - Fall 2017 - 41
BUILDING ENERGY - Fall 2017 - SAF®– A Solar Faade to Stay?: A technical overview of the newest attachment systems in the low-energy construction market.
BUILDING ENERGY - Fall 2017 - 43
BUILDING ENERGY - Fall 2017 - 44
BUILDING ENERGY - Fall 2017 - 45
BUILDING ENERGY - Fall 2017 - 46
BUILDING ENERGY - Fall 2017 - 47
BUILDING ENERGY - Fall 2017 - NESEA Green Pages: This premier resource for sustainability professionals in the Northeast and beyond is just a few pages away. To have your business listed in next year’s Green Pages and become a NESEA business member today, visit nesea.org/join.
BUILDING ENERGY - Fall 2017 - 49
BUILDING ENERGY - Fall 2017 - 50
BUILDING ENERGY - Fall 2017 - INSERT3
BUILDING ENERGY - Fall 2017 - INSERT4
BUILDING ENERGY - Fall 2017 - 51
BUILDING ENERGY - Fall 2017 - 52
BUILDING ENERGY - Fall 2017 - 53
BUILDING ENERGY - Fall 2017 - 54
BUILDING ENERGY - Fall 2017 - 55
BUILDING ENERGY - Fall 2017 - 56
BUILDING ENERGY - Fall 2017 - 57
BUILDING ENERGY - Fall 2017 - 58
BUILDING ENERGY - Fall 2017 - 59
BUILDING ENERGY - Fall 2017 - 60
BUILDING ENERGY - Fall 2017 - 61
BUILDING ENERGY - Fall 2017 - 62
BUILDING ENERGY - Fall 2017 - 63
BUILDING ENERGY - Fall 2017 - 64
BUILDING ENERGY - Fall 2017 - 65
BUILDING ENERGY - Fall 2017 - 66
BUILDING ENERGY - Fall 2017 - 67
BUILDING ENERGY - Fall 2017 - 68
BUILDING ENERGY - Fall 2017 - 69
BUILDING ENERGY - Fall 2017 - 70
BUILDING ENERGY - Fall 2017 - 71
BUILDING ENERGY - Fall 2017 - 72
BUILDING ENERGY - Fall 2017 - 73
BUILDING ENERGY - Fall 2017 - 74
BUILDING ENERGY - Fall 2017 - 75
BUILDING ENERGY - Fall 2017 - 76
BUILDING ENERGY - Fall 2017 - Index to Advertisers
BUILDING ENERGY - Fall 2017 - 78
BUILDING ENERGY - Fall 2017 - cover3
BUILDING ENERGY - Fall 2017 - cover4
BUILDING ENERGY - Fall 2017 - outsert1
BUILDING ENERGY - Fall 2017 - outsert2
BUILDING ENERGY - Fall 2017 - outsert3
BUILDING ENERGY - Fall 2017 - outsert4
BUILDING ENERGY - Fall 2017 - outsert5
BUILDING ENERGY - Fall 2017 - outsert6
https://www.nxtbook.com/naylor/ENEB/ENEB0118
https://www.nxtbook.com/naylor/ENEB/ENEB0217
https://www.nxtbook.com/naylor/ENEB/ENEB0117
https://www.nxtbook.com/naylor/ENEB/ENEB0216
https://www.nxtbook.com/naylor/ENEB/ENEB0116
https://www.nxtbook.com/naylor/ENEB/ENEB0215
https://www.nxtbookmedia.com