Sky and Telescope - January 2017 - SGA17R

Skygazer's 40°N
Almanac
FOR L ATITUDES
NE AR 40° NORTH

What's in the
sky tonight?
When does the Sun set, and when does
twilight end? Which planets are visible?
What time does the Moon rise?
Welcome to the Skygazer's Almanac
2017, a handy chart that answers these
and many other questions for every night
of the year. It is plotted for skywatchers
near latitude 40° north - in the United
States, Mediterranean countries, Japan,
and much of China.
For any date, the chart tells the times
when astronomical events occur during
the night. Dates on the chart run vertically from top to bottom. The time of
night runs horizontally, from sunset at
left to sunrise at right. Find the date you
want on the left side of the chart, and
read across toward the right to find the
times of events. Times are labeled along
the chart's top and bottom.
In exploring the chart you'll find that
its night-to-night patterns offer many
insights into the rhythms of the heavens.

The Events of a Single Night
To learn how to use the chart, consider
some of the events of one night. We'll
pick January 8, 2017.
First find "January" and "8" at the left
edge. This is one of the dates for which
a string of fine dots crosses the chart
horizontally. Each horizontal dotted line
represents the night from a Sunday evening to Monday morning. The individual
dots are five minutes apart.
Every half hour (six dots), there is
a vertical dotted line to aid in reading
the hours of night at the chart's top or
bottom. On the vertical lines, one dot is
equal to one day.
A sweep of the eye shows that the line
for the night of January 8-9 crosses many
SGA17R

2017

slanting event lines. Each event line tells
when something happens.
The dotted line for January 8-9 begins
at the heavy black curve at left, which
represents the time of sunset. Reading
up to the top of the chart, we find that
sunset on January 8th occurs at 4:52 p.m.
Local Mean Time. (All times on the chart
are Local Mean Time, which can differ
from your standard clock time. More on
this later.)
Moving to the right, we see that
evening twilight ends at 6:29 p.m., the
time when the Sun is 18° below the
horizon and the sky is fully dark. Then
at 7:39 Polaris, the North Star, reaches
upper culmination. This means it stands
directly above the north celestial pole (by
40′ this year), a good time to check the
alignment of an equatorial telescope.
At 8:33 p.m. the Pleiades transit the
meridian, meaning the famous star cluster is due south and highest in the sky. At
8:46 the brilliant planet Venus sets in the
west, followed by dim Neptune at 9:06
and red-orange Mars at 9:35.
The Great Orion Nebula (Messier 42)
transits at 10:21, as does the bright star
Sirius at 11:30. Transits of such celestial
landmarks help indicate when they are
best placed for viewing, and where the
constellations are during the night.
Running vertically down the midnight line is a scale of hours. This shows
the sidereal time (the right ascension of
objects on the meridian) at midnight. On
January 8-9 this is 7h 16m. To find the
sidereal time at any other time and date
on the chart, locate that point and draw a
line through it parallel to the white event
lines of stars. See where your line intersects the sidereal-time scale at midnight.
(A star's event line enters the top of the
chart at the same time of night it leaves
the bottom. Sometimes one of these segments is left out to avoid crowding.)
Near the midnight line is a white

curve labeled Equation of time weaving
narrowly right and left down the chart.
If you regard the midnight line as noon
for a moment, this curve shows when
the Sun crosses the meridian and is due
south. On January 8th the Sun runs slow,
transiting at 12:07 p.m. This variation is
caused by the tilt of Earth's axis and the
ellipticity of its orbit.
Giant planet Jupiter rises at 12:29
a.m. and will become better placed for
telescopic viewing toward dawn.
At 4:06 a.m. we see a Moon symbol,
and the legend at the chart's bottom
tells us it is at waxing gibbous phase,
and setting. (So the night until now has
been brightly moonlit.) Then at 4:49 a.m.
Antares, a star we usually associate with
a much later season, rises.
The ringed planet Saturn comes up
at 5:26, and the first hint of dawn - the
start of morning twilight - comes at
5:45. A few minutes later elusive Mercury
rises, early enough before sunup that we
should spot it later as it climbs higher.
The Sun finally peeks above the horizon
at 7:22 a.m. on January 9th.

Other Charted Information
Many of the year's chief astronomical
events are listed in the chart's evening
and morning margins. Some are marked
on the chart itself.
Conjunctions (close pairings) of two
planets are indicated on the chart by a
symbol on the planets' event lines.
Here, conjunctions are considered to
occur when the planets actually appear
closest together in the sky (at appulse),
not merely when they share the same
ecliptic longitude or right ascension.
Opposition of a planet, the date when
it is opposite the Sun in the sky and thus
visible all night, occurs when its transit
line crosses the Equation-of-time line
(not the line for midnight). Opposition is
marked there by a
symbol, as is done



Sky and Telescope - January 2017

Table of Contents for the Digital Edition of Sky and Telescope - January 2017

Contents
Sky and Telescope - January 2017 - Cover1
Sky and Telescope - January 2017 - Cover2
Sky and Telescope - January 2017 - 1
Sky and Telescope - January 2017 - Contents
Sky and Telescope - January 2017 - 3
Sky and Telescope - January 2017 - 4
Sky and Telescope - January 2017 - 5
Sky and Telescope - January 2017 - 6
Sky and Telescope - January 2017 - 7
Sky and Telescope - January 2017 - 8
Sky and Telescope - January 2017 - 9
Sky and Telescope - January 2017 - 10
Sky and Telescope - January 2017 - 11
Sky and Telescope - January 2017 - 12
Sky and Telescope - January 2017 - 13
Sky and Telescope - January 2017 - 14
Sky and Telescope - January 2017 - 15
Sky and Telescope - January 2017 - 16
Sky and Telescope - January 2017 - 17
Sky and Telescope - January 2017 - 18
Sky and Telescope - January 2017 - 19
Sky and Telescope - January 2017 - 20
Sky and Telescope - January 2017 - 21
Sky and Telescope - January 2017 - 22
Sky and Telescope - January 2017 - 23
Sky and Telescope - January 2017 - 24
Sky and Telescope - January 2017 - 25
Sky and Telescope - January 2017 - 26
Sky and Telescope - January 2017 - 27
Sky and Telescope - January 2017 - 28
Sky and Telescope - January 2017 - 29
Sky and Telescope - January 2017 - 30
Sky and Telescope - January 2017 - 31
Sky and Telescope - January 2017 - 32
Sky and Telescope - January 2017 - 33
Sky and Telescope - January 2017 - 34
Sky and Telescope - January 2017 - 35
Sky and Telescope - January 2017 - 36
Sky and Telescope - January 2017 - 37
Sky and Telescope - January 2017 - 38
Sky and Telescope - January 2017 - 39
Sky and Telescope - January 2017 - 40
Sky and Telescope - January 2017 - 41
Sky and Telescope - January 2017 - 42
Sky and Telescope - January 2017 - 43
Sky and Telescope - January 2017 - 44
Sky and Telescope - January 2017 - 45
Sky and Telescope - January 2017 - 46
Sky and Telescope - January 2017 - 47
Sky and Telescope - January 2017 - 48
Sky and Telescope - January 2017 - 49
Sky and Telescope - January 2017 - 50
Sky and Telescope - January 2017 - 51
Sky and Telescope - January 2017 - 52
Sky and Telescope - January 2017 - 53
Sky and Telescope - January 2017 - 54
Sky and Telescope - January 2017 - 55
Sky and Telescope - January 2017 - 56
Sky and Telescope - January 2017 - 57
Sky and Telescope - January 2017 - 58
Sky and Telescope - January 2017 - 59
Sky and Telescope - January 2017 - 60
Sky and Telescope - January 2017 - 61
Sky and Telescope - January 2017 - 62
Sky and Telescope - January 2017 - 63
Sky and Telescope - January 2017 - 64
Sky and Telescope - January 2017 - 65
Sky and Telescope - January 2017 - 66
Sky and Telescope - January 2017 - 67
Sky and Telescope - January 2017 - 68
Sky and Telescope - January 2017 - 69
Sky and Telescope - January 2017 - 70
Sky and Telescope - January 2017 - 71
Sky and Telescope - January 2017 - 72
Sky and Telescope - January 2017 - 73
Sky and Telescope - January 2017 - 74
Sky and Telescope - January 2017 - 75
Sky and Telescope - January 2017 - 76
Sky and Telescope - January 2017 - 77
Sky and Telescope - January 2017 - 78
Sky and Telescope - January 2017 - 79
Sky and Telescope - January 2017 - 80
Sky and Telescope - January 2017 - 81
Sky and Telescope - January 2017 - 82
Sky and Telescope - January 2017 - 83
Sky and Telescope - January 2017 - 84
Sky and Telescope - January 2017 - Cover3
Sky and Telescope - January 2017 - Cover4
Sky and Telescope - January 2017 - SGA17RAL
Sky and Telescope - January 2017 - 90
Sky and Telescope - January 2017 - SGA17R
Sky and Telescope - January 2017 - SGA17RA
Sky and Telescope - January 2017 - SGA17EAL
Sky and Telescope - January 2017 - 94
Sky and Telescope - January 2017 - SGA17E
Sky and Telescope - January 2017 - SGA17EA
Sky and Telescope - January 2017 - SGA17SAL
Sky and Telescope - January 2017 - 98
Sky and Telescope - January 2017 - SGA17S
Sky and Telescope - January 2017 - SGA17SA
https://www.nxtbook.com/nxtbooks/aas/st_202112
https://www.nxtbook.com/nxtbooks/aas/st_202111
https://www.nxtbook.com/nxtbooks/aas/st_202110
https://www.nxtbook.com/nxtbooks/aas/st_202109
https://www.nxtbook.com/nxtbooks/aas/st_202108
https://www.nxtbook.com/nxtbooks/aas/st_202107
https://www.nxtbook.com/nxtbooks/aas/st_202106
https://www.nxtbook.com/nxtbooks/aas/st_202105
https://www.nxtbook.com/nxtbooks/aas/st_202104
https://www.nxtbook.com/nxtbooks/aas/st_202103
https://www.nxtbook.com/nxtbooks/aas/st_202102
https://www.nxtbook.com/nxtbooks/aas/st_202101
https://www.nxtbook.com/nxtbooks/aas/skywatch_2021
https://www.nxtbook.com/nxtbooks/aas/st_202012
https://www.nxtbook.com/nxtbooks/aas/st_202011
https://www.nxtbook.com/nxtbooks/aas/st_202010
https://www.nxtbook.com/nxtbooks/aas/st_202009
https://www.nxtbook.com/nxtbooks/aas/st_202008
https://www.nxtbook.com/nxtbooks/aas/st_202007
https://www.nxtbook.com/nxtbooks/aas/st_202006
https://www.nxtbook.com/nxtbooks/aas/st_202005
https://www.nxtbook.com/nxtbooks/aas/st_202004
https://www.nxtbook.com/nxtbooks/aas/st_202003
https://www.nxtbook.com/nxtbooks/aas/st_202002
https://www.nxtbook.com/nxtbooks/aas/st_202001
https://www.nxtbook.com/nxtbooks/aas/st_201912
https://www.nxtbook.com/nxtbooks/aas/st_201911
https://www.nxtbook.com/nxtbooks/aas/st_201910
https://www.nxtbook.com/nxtbooks/aas/st_201909
https://www.nxtbook.com/nxtbooks/aas/st_201908
https://www.nxtbook.com/nxtbooks/aas/st_201907
https://www.nxtbook.com/nxtbooks/aas/st_201906
https://www.nxtbook.com/nxtbooks/aas/st_201905
https://www.nxtbook.com/nxtbooks/aas/st_201904
https://www.nxtbook.com/nxtbooks/aas/st_201903
https://www.nxtbook.com/nxtbooks/aas/st_201902
https://www.nxtbook.com/nxtbooks/aas/st_201901
https://www.nxtbook.com/nxtbooks/aas/st_201812
https://www.nxtbook.com/nxtbooks/aas/st_201811
https://www.nxtbook.com/nxtbooks/aas/st_201810
https://www.nxtbook.com/nxtbooks/aas/st_201809
https://www.nxtbook.com/nxtbooks/aas/st_201808
https://www.nxtbook.com/nxtbooks/aas/st_201807
https://www.nxtbook.com/nxtbooks/aas/st_201806
https://www.nxtbook.com/nxtbooks/aas/st_201805
https://www.nxtbook.com/nxtbooks/aas/st_201804
https://www.nxtbook.com/nxtbooks/aas/st_201803
https://www.nxtbook.com/nxtbooks/aas/st_201802
https://www.nxtbook.com/nxtbooks/aas/st_201801
https://www.nxtbook.com/nxtbooks/aas/st_201712
https://www.nxtbook.com/nxtbooks/aas/st_201711
https://www.nxtbook.com/nxtbooks/aas/st_201710
https://www.nxtbook.com/nxtbooks/aas/st_201709
https://www.nxtbook.com/nxtbooks/aas/st_201708
https://www.nxtbook.com/nxtbooks/aas/st_201707
https://www.nxtbook.com/nxtbooks/aas/st_201706
https://www.nxtbook.com/nxtbooks/aas/st_201705
https://www.nxtbook.com/nxtbooks/aas/st_201704
https://www.nxtbook.com/nxtbooks/aas/st_201703
https://www.nxtbook.com/nxtbooks/aas/st_201702
https://www.nxtbook.com/nxtbooks/aas/st_201701
https://www.nxtbook.com/nxtbooks/aas/st_201612
https://www.nxtbook.com/nxtbooks/aas/st_201611
https://www.nxtbook.com/nxtbooks/newtrack/st_201612
https://www.nxtbook.com/nxtbooks/aas/st_201610
https://www.nxtbook.com/nxtbooks/aas/st_201609
https://www.nxtbook.com/nxtbooks/aas/st_201608
https://www.nxtbook.com/nxtbooks/aas/st_201607
https://www.nxtbook.com/nxtbooks/aas/st_201606
https://www.nxtbook.com/nxtbooks/aas/st_201605
https://www.nxtbook.com/nxtbooks/aas/st_201604
https://www.nxtbook.com/nxtbooks/aas/st_201603
https://www.nxtbook.com/nxtbooks/aas/st_201602
https://www.nxtbook.com/nxtbooks/aas/st_201601
https://www.nxtbook.com/nxtbooks/aas/st_201512
https://www.nxtbook.com/nxtbooks/aas/st_201511
https://www.nxtbook.com/nxtbooks/aas/st_201510
https://www.nxtbook.com/nxtbooks/aas/st_201509
https://www.nxtbook.com/nxtbooks/aas/st_201508
https://www.nxtbook.com/nxtbooks/aas/st_201507
https://www.nxtbook.com/nxtbooks/aas/st_201506
https://www.nxtbook.com/nxtbooks/aas/st_201505
https://www.nxtbook.com/nxtbooks/aas/st_201504
https://www.nxtbook.com/nxtbooks/aas/st_201503
https://www.nxtbook.com/nxtbooks/aas/st_201502
https://www.nxtbook.com/nxtbooks/aas/st_201501
https://www.nxtbook.com/nxtbooks/aas/st_201412
https://www.nxtbook.com/nxtbooks/aas/st_201411
https://www.nxtbook.com/nxtbooks/aas/st_201410
https://www.nxtbook.com/nxtbooks/aas/st_201409
https://www.nxtbook.com/nxtbooks/aas/st_201408
https://www.nxtbook.com/nxtbooks/aas/st_201407
https://www.nxtbook.com/nxtbooks/aas/st_201406
https://www.nxtbook.com/nxtbooks/aas/st_mars
https://www.nxtbook.com/nxtbooks/aas/st_201405
https://www.nxtbook.com/nxtbooks/aas/st_201404
https://www.nxtbook.com/nxtbooks/aas/st_201403
https://www.nxtbook.com/nxtbooks/aas/st_201402
https://www.nxtbook.com/nxtbooks/aas/st_201401
https://www.nxtbook.com/nxtbooks/aas/st_201312
https://www.nxtbook.com/nxtbooks/aas/st_201311
https://www.nxtbook.com/nxtbooks/aas/st_201310
https://www.nxtbook.com/nxtbooks/aas/st_201309
https://www.nxtbook.com/nxtbooks/aas/st_201308
https://www.nxtbook.com/nxtbooks/aas/st_201307
https://www.nxtbook.com/nxtbooks/aas/st_201306
https://www.nxtbook.com/nxtbooks/aas/st_201305
https://www.nxtbook.com/nxtbooks/aas/st_201304
https://www.nxtbook.com/nxtbooks/aas/st_201303
https://www.nxtbook.com/nxtbooks/aas/st_201302
https://www.nxtbook.com/nxtbooks/aas/st_201301
https://www.nxtbook.com/nxtbooks/aas/st_201212
https://www.nxtbook.com/nxtbooks/aas/st_201211
https://www.nxtbook.com/nxtbooks/aas/st_201210
https://www.nxtbook.com/nxtbooks/aas/st_201209
https://www.nxtbook.com/nxtbooks/aas/st_201208
https://www.nxtbook.com/nxtbooks/aas/st_201207
https://www.nxtbook.com/nxtbooks/aas/st_201206
https://www.nxtbook.com/nxtbooks/aas/st_201205
https://www.nxtbook.com/nxtbooks/aas/st_201204
https://www.nxtbook.com/nxtbooks/aas/st_201203
https://www.nxtbook.com/nxtbooks/aas/st_201202
https://www.nxtbook.com/nxtbooks/aas/st_201201
https://www.nxtbook.com/nxtbooks/aas/st_201112
https://www.nxtbook.com/nxtbooks/aas/st_201111
https://www.nxtbook.com/nxtbooks/aas/st_201110
https://www.nxtbook.com/nxtbooks/aas/st_201109
https://www.nxtbook.com/nxtbooks/aas/st_201108
https://www.nxtbook.com/nxtbooks/aas/st_201107
https://www.nxtbook.com/nxtbooks/aas/st_201106
https://www.nxtbook.com/nxtbooks/aas/st_201105
https://www.nxtbook.com/nxtbooks/aas/st_201104
https://www.nxtbook.com/nxtbooks/aas/st_201103
https://www.nxtbook.com/nxtbooks/aas/st_201102
https://www.nxtbook.com/nxtbooks/aas/st_201101
https://www.nxtbook.com/nxtbooks/aas/st_201012
https://www.nxtbook.com/nxtbooks/aas/st_201011
https://www.nxtbook.com/nxtbooks/aas/st_201010
https://www.nxtbook.com/nxtbooks/aas/st_201009
https://www.nxtbook.com/nxtbooks/aas/st_201008
https://www.nxtbook.com/nxtbooks/aas/st_201007
https://www.nxtbook.com/nxtbooks/aas/st_201006
https://www.nxtbook.com/nxtbooks/aas/st_201005
https://www.nxtbook.com/nxtbooks/aas/st_201004
https://www.nxtbook.com/nxtbooks/aas/st_201003
https://www.nxtbook.com/nxtbooks/aas/st_201002
https://www.nxtbook.com/nxtbooks/aas/st_201001
https://www.nxtbookmedia.com