ASHRAE Journal - May 2013 - 78

IAQ APPLICATIONS

Guideline for Infection Control

Natural Ventilation Use
By Yuguo Li, Ph.D., Fellow ASHRAE

T

he World Health Organization’s first infection control guideline to
consider natural ventilation as a potentially effective measure to

manage infections from a serious respiratory disease in health-care
settings was published in 2007.1 Subsequently, WHO published “Natu-

ral Ventilation for Infection Control in Health-Care Settings,”2 which
describes the basic principles of how to design, construct, operate and
maintain an effective natural ventilation system.
The most beneficial feature of natural
ventilation is its potential for achieving a
high ventilation rate with minimum cost.
Lack of ventilation or low ventilation
rates are known to be associated with an
increase of infection rates or disease outbreak for either airborne transmission or
opportunistic airborne transmission. High
ventilation rates, therefore, should lead to
a measureable decrease of infection rates.
However, the least beneficial feature is
the possibility of spreading disease because
of the difficulty controlling airflow direction. Airflow direction plays dual roles in
disease transmission when airborne or
opportunistic airborne routes exist. The
airflow from the “dirty source” space to
the “clean” (without source) space can
transmit infection if either the dirty space
or the clean space is not properly ventilated. Existing guidelines for mechanically
ventilated isolation rooms require that a
minimum negative pressure be maintained
to ensure a consistent airflow direction.
Airflow can protect the upstream locations from downstream “dirty source”
locations. In principle, the airflow from
a contaminated source location (such as
a room or a ward) can lead to infection
farther away from the source. The rate of
78

ASHRAE Journal

infection (attack) reduces as the physical
distance from the source increases. One
of the essential conditions for airflowinduced infection occurring is that the
airborne pathogen concentration in the
source location must be sufficiently high,
usually due to either high source strength
or a low ventilation rate.
An argument for the use of natural
ventilation is based on the fact that the
airflow from a contaminated source location with sufficiently high dilution should
not lead to further infection. However,
information is not yet available on the
exact amount of minimum dilution that
is needed. Absolute values may require
substantial further research focused on
specific organisms and diseases and,
likely, specific climates, infectious doses,
activities, and patient health status.

How Much Natural Ventilation?
There are at least three major difficulties in determining the required natural
ventilation flow rates.
1. There is insufficient data to recommend a minimum ventilation flow rate
for infection control in isolation rooms
(this is also the case for mechanical
ventilation).
ashrae.org

2. Natural ventilation flow rates always
fluctuate due to fluctuating driving forces
and opening sizes.
3. Ultimately, ventilation can only reduce risks; the precise amount is always
subject to assumptions about the acceptability of an anticipated level of risk.
Although higher ventilation rates can
more rapidly dilute contaminated air inside
a space and are expected to decrease the
risk of cross infection, at a certain level
the benefit of additional ventilation may be
expected to be marginal. This upper ventilation rate level for airborne infection control
is, however, not known at this time. The
choice of the minimal and maximal ventilation flow rates may be also influenced by
the needs of reducing energy consumption.
Most existing infection control guidelines for isolation rooms used two rationales2 to justify the specification of
ventilation requirements:
• The effect of air change rate on decay of
droplet nuclei concentration, which favors
the use of air changes per hour (ACH); and
• Mathematical modeling of risk using the Wells–Riley equation to estimate
the effect of ventilation rate on infection
risk for known airborne diseases, which
favors the use of L/s (cfm) per patient.
Whichever is used, there is an implicit
assumption about the infectious dose,
which is unknown. Ventilation is of limited effectiveness in protecting against the
so-called short-range airborne transmission of diseases.3
When ACH is used, the volume of
the enclosed room is also important. A
ward with a larger volume will obviously
require a larger volumetric airflow rate
(m3/s [ft3/s]) than one with a smaller
volume for the same ACH.
Existing guidelines for mechanical isolation rooms contain a provision of the minimum ventilation rate of 12 ach. If natural
May 2013



ASHRAE Journal - May 2013

Table of Contents for the Digital Edition of ASHRAE Journal - May 2013

ASHRAE Journal - May 2013
Contents
Commentary
Industry News
Letters
Meetings and Shows
Feature Articles
VAV Reheat Versus Active Chilled Beams & DOAS
A Stable Whole Building Performance Method for Standard 90.1
Technology Award Case Studies:
PSU Design Build Project
Passive Cooling for School
Standing Columns
Building Sciences
InfoCenter
Refrigeration Applications
IAQ Applications
Engineer's Notebook
Products
Data Centers
Emerging Technologies
Classified Advertising
Advertisers Index
ASHRAE Journal - May 2013 - ASHRAE Journal - May 2013
ASHRAE Journal - May 2013 - Cover2
ASHRAE Journal - May 2013 - 1
ASHRAE Journal - May 2013 - 2
ASHRAE Journal - May 2013 - Contents
ASHRAE Journal - May 2013 - Commentary
ASHRAE Journal - May 2013 - 5
ASHRAE Journal - May 2013 - Industry News
ASHRAE Journal - May 2013 - 7
ASHRAE Journal - May 2013 - 8
ASHRAE Journal - May 2013 - 9
ASHRAE Journal - May 2013 - 10
ASHRAE Journal - May 2013 - 11
ASHRAE Journal - May 2013 - 12
ASHRAE Journal - May 2013 - 13
ASHRAE Journal - May 2013 - Letters
ASHRAE Journal - May 2013 - 15
ASHRAE Journal - May 2013 - Meetings and Shows
ASHRAE Journal - May 2013 - 17
ASHRAE Journal - May 2013 - VAV Reheat Versus Active Chilled Beams & DOAS
ASHRAE Journal - May 2013 - 19
ASHRAE Journal - May 2013 - 20
ASHRAE Journal - May 2013 - 21
ASHRAE Journal - May 2013 - 22
ASHRAE Journal - May 2013 - 23
ASHRAE Journal - May 2013 - 24
ASHRAE Journal - May 2013 - 25
ASHRAE Journal - May 2013 - 26
ASHRAE Journal - May 2013 - 27
ASHRAE Journal - May 2013 - 28
ASHRAE Journal - May 2013 - 29
ASHRAE Journal - May 2013 - 30
ASHRAE Journal - May 2013 - 31
ASHRAE Journal - May 2013 - 32
ASHRAE Journal - May 2013 - A Stable Whole Building Performance Method for Standard 90.1
ASHRAE Journal - May 2013 - 34
ASHRAE Journal - May 2013 - 35
ASHRAE Journal - May 2013 - 36
ASHRAE Journal - May 2013 - 37
ASHRAE Journal - May 2013 - 38
ASHRAE Journal - May 2013 - 39
ASHRAE Journal - May 2013 - 40
ASHRAE Journal - May 2013 - 41
ASHRAE Journal - May 2013 - 42
ASHRAE Journal - May 2013 - 43
ASHRAE Journal - May 2013 - 44
ASHRAE Journal - May 2013 - 45
ASHRAE Journal - May 2013 - PSU Design Build Project
ASHRAE Journal - May 2013 - 47
ASHRAE Journal - May 2013 - 48
ASHRAE Journal - May 2013 - 49
ASHRAE Journal - May 2013 - 50
ASHRAE Journal - May 2013 - 51
ASHRAE Journal - May 2013 - 52
ASHRAE Journal - May 2013 - 53
ASHRAE Journal - May 2013 - Passive Cooling for School
ASHRAE Journal - May 2013 - 55
ASHRAE Journal - May 2013 - 56
ASHRAE Journal - May 2013 - 57
ASHRAE Journal - May 2013 - 58
ASHRAE Journal - May 2013 - 59
ASHRAE Journal - May 2013 - 60
ASHRAE Journal - May 2013 - 61
ASHRAE Journal - May 2013 - Building Sciences
ASHRAE Journal - May 2013 - 63
ASHRAE Journal - May 2013 - 64
ASHRAE Journal - May 2013 - 65
ASHRAE Journal - May 2013 - 66
ASHRAE Journal - May 2013 - 67
ASHRAE Journal - May 2013 - 68
ASHRAE Journal - May 2013 - 69
ASHRAE Journal - May 2013 - InfoCenter
ASHRAE Journal - May 2013 - 71
ASHRAE Journal - May 2013 - 72
ASHRAE Journal - May 2013 - 73
ASHRAE Journal - May 2013 - 74
ASHRAE Journal - May 2013 - Refrigeration Applications
ASHRAE Journal - May 2013 - 76
ASHRAE Journal - May 2013 - 77
ASHRAE Journal - May 2013 - IAQ Applications
ASHRAE Journal - May 2013 - 79
ASHRAE Journal - May 2013 - 80
ASHRAE Journal - May 2013 - 81
ASHRAE Journal - May 2013 - 82
ASHRAE Journal - May 2013 - 83
ASHRAE Journal - May 2013 - Engineer's Notebook
ASHRAE Journal - May 2013 - 85
ASHRAE Journal - May 2013 - Products
ASHRAE Journal - May 2013 - 87
ASHRAE Journal - May 2013 - Data Centers
ASHRAE Journal - May 2013 - 89
ASHRAE Journal - May 2013 - 90
ASHRAE Journal - May 2013 - 91
ASHRAE Journal - May 2013 - Emerging Technologies
ASHRAE Journal - May 2013 - 93
ASHRAE Journal - May 2013 - 94
ASHRAE Journal - May 2013 - Classified Advertising
ASHRAE Journal - May 2013 - Advertisers Index
ASHRAE Journal - May 2013 - Cover3
ASHRAE Journal - May 2013 - Cover4
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_SDHUTC
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_JPPKRR
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_SDLTTH
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_CKLLES
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_SLDOX
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_HJETUK
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_OLUHGE
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2020october
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2020october_v2
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_ZERDGH
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_QVMNEO
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_RTPOKE
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_BBATRE
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_STUBMW
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_TPEMPE
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_JNMKDS
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_FBTTPA
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_WQMMNE
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_TVBRYN
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_showguide2020
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_KTUZMA
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_ABEDGD
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201910
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201909
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2019septmeber_v2
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2019september
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201908
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201907
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201906
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201905
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201904
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_2019april
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201903
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_2019march
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201902
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201901
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_showguide2019
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_2018december
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_2018november
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2018fall_v2
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2018fall
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_2018october
https://www.nxtbook.com/nxtbooks/ashrae/ashraemexico_2018
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201810
https://www.nxtbook.com/nxtbooks/ashrae/ashraeinsights_201806
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201805
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201804
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201803
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201712
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201711
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201710
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2017fall_v2
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2017fall
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201709
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201705
https://www.nxtbook.com/nxtbooks/ashrae/ashrae_meetinginsert_201610
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2016fall_v2
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2016fall
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_acrexindia
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2015summer_v2
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_amca_2015summer
https://www.nxtbook.com/nxtbooks/amca/2014summer2
https://www.nxtbook.com/nxtbooks/amca/2014summer
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_acma_2014summer
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201311
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201309
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_acmasupp_2013fall
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201305
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201303
https://www.nxtbook.com/nxtbooks/ashrae/pubcatalog_2013winter
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201211
https://www.nxtbook.com/nxtbooks/ashrae/achr_expo_mexico2012
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201209
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201208_v3
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201208_v2
https://www.nxtbook.com/nxtbooks/ashrae/pubcatalog_2012summer
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201205
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201203
https://www.nxtbook.com/nxtbooks/ashrae/pubcatalog_2012winter
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201111_v2
https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201109_v2
https://www.nxtbook.com/nxtbooks/ashrae/pubcatalog_2011summer
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201105
https://www.nxtbook.com/nxtbooks/ashrae/meetingplanner_201103
https://www.nxtbookmedia.com