Sartorius_May21_NeutAntiMakingTheir - 41

NEUTRALIZING ANTIBODIES MAKING THEIR MARK IN NEXT WAVE OF BIOLOGICS

strategies for SARS CoV-2. Table 2 provides

availability of a variety of ready-to-use biosensor

a summary of selected studies illustrating

chemistries has enabled users to significantly

theuse of Octet® assays on current and historical

reduce time to results and advance the

coronavirus research20-27. In all these studies, the

continued search for vaccines and therapeutics

Octet® system's ease-of-use combined with the

for the current pandemic. n

References
1.	 Structures of protective antibodies reveal sites of vulnerability on
Ebola virus, Murin CD et al., Proc Natl Acad Sci USA, 111:17182-17187,
2014, doi:10.1073/pnas.1414164111.

14.	 A highly conserved cryptic epitope in the receptor-binding domains
of SARS-CoV-2 and SARS-CoV, Science, doi:10.1126/science.abb7269
(2020).

2.	 A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664
gp140, expresses multiple epitopes for broadly neutralizing but
not non-neutralizing antibodies, Sanders RW, et al., PLoS Pathog,
9:e1003618, 2013, doi:10.1371/journal.ppat.1003618.

15.	 The first-in-class peptide binder to the SARS-CoV-2 Spike
protein, Zhang G, et al., bioRxiv, 2020.2003.2019.999318, 2020,
doi:10.1101/2020.03.19.999318.

3.	 Kinetic analysis of the influenza A virus HA/NA balance reveals
contribution of NA to virus-receptor binding and NA-dependent
rolling on receptor-containing surfaces, Guo H, et al., PLoS Pathog,
14:e1007233, 2018, doi:10.1371/journal.ppat.1007233.
4.	 Antibody Repertoires to the Same Ebola Vaccine Antigen Are
Differentially Affected by Vaccine Vectors, Meyer M, et al., Cell Rep,
24:1816-1829, 2018, doi:10.1016/j.celrep. 2018.07.044.
5.	 A Cryptic Site of Vulnerability on the Receptor Binding Domain
of the SARS-CoV-2 Spike Glycoprotein, Joyce MG, et al., bioRxiv,
2020.2003.2015.992883, 2020, doi:10.1101/2020.03.15.992883.
6.	 Immunoglobulin fragment F(ab')2 against RBD potently neutralizes
SARS-CoV-2 in vitro, Pan X, et al., bioRxiv, 2020. 2004.2007.029884,
2020, doi:10.1101/2020.04.07.029884.
7.	 Structural and functional analysis of a potent sarbecovirus
neutralizing antibody, Pinto D, et al., bioRxiv, 2020.2004. 2007.023903,
2020, doi:10.1101/2020.04.07.023903.
8.	 SARS-CoV-2 and SARS-CoV spike-RBD structure and receptor binding
comparison and potential implications on neutralizing antibody and
vaccine development, Sun C, et al., bioRxiv, 2020.2002.2016.951723,
2020, doi:10.1101/ 2020.02.16.951723.
9.	 Potent binding of 2019 novel coronavirus spike protein by a SARS
coronavirus-specific human monoclonal antibody, Tian X, et al., Emerg
Microbes Infect, 9:382-385, 2020, doi:10.1080/22221751.2020.17290
69.
10.	 Structure, function, and antigenicity of the SARS-CoV-2 Spike
glycoprotein, Walls, AC et al., Cell, 181:281-292 e286, 2020,
doi:10.1016/j.cell.2020.02.058.
11.	 A human monoclonal antibody blocking SARS-CoV-2
infection, Wang C, et al., bioRxiv, 2020.2003.2011.987958, 2020,
doi:10.1101/2020.03.11.987958.
12.	 Cryo-EM structure of the 2019-nCoV spike in the prefusion
conformation, Wrapp D, et al., Science, 367:1260-1263, 2020,
doi:10.1126/science.abb2507.
13.	 Fully human single-domain antibodies against SARS-CoV-2,
Wu Y, et al., bioRxiv, 2020.2003.2030.015990, 2020,
doi:10.1101/2020.03.30.015990.

16.	 Presenting native-like trimeric HIV-1 antigens with self- assembling
nanoparticles, He L, et al., Nat Commun, 7:12041, 2016, doi:10.1038/
ncomms12041.
17.	 Exposure of epitope residues on the outer face of the chikungunya
virus envelope trimer determines antibody neutralizing efficacy, Fong
RH, et al., J Virol, 88:14364-14379, 2014, doi:10.1128/JVI.01943-14.
18.	 A " Trojan horse " bispecific-antibody strategy for broad protection
against ebolaviruses, Wec AZ, et al., Science, 354:350-354, 2016,
doi:10.1126/science.aag3267.
19.	 Functional assessment of cell entry and receptor usage for
SARS-CoV-2 and other lineage B betacoronaviruses, Letko M, Marzi A
and Munster V, Nat Microbiol, 5:562-569, 2020, doi:10.1038/s41564020-0688-y.
20.	 Structural basis for human coronavirus attachment to sialic acid
receptors, Tortorici MA, et al., Nat Struct Mol Biol, 26:481-489, 2019,
doi:10.1038/s41594-019-0233-y.
21.	 Potent MERS-CoV fusion inhibitory peptides identified from HR2
domain in spike protein of bat coronavirus HKU4, Xia S, et al., Viruses,
11, 2019, doi:10.3390/v11010056.
22.	 Towards a solution to MERS: protective human monoclonal
antibodies targeting different domains and functions of the MERScoronavirus spike glycoprotein, Widjaja I, et al., Emerg Microbes Infect,
8:516-530, 2019, doi:10.1080/22221751.2019.1597644.
23.	 Importance of neutralizing monoclonal antibodies targeting multiple
antigenic sites on the Middle East Respiratory Syndrome coronavirus
spike glycoprotein to avoid neutralization escape, Wang L, et al., J
Virol, 92, 2018, doi:10.1128/JVI.02002-17.
24.	 Structural definition of a neutralization epitope on the N-terminal
domain of MERS-CoV spike glycoprotein, Zhou H, et al., Nat Commun,
10:3068, 2019, doi:10.1038/s41467-019-10897-4.
25.	 Ultrapotent human neutralizing antibody repertoires against Middle
East Respiratory Syndrome coronavirus from a recovered patient, Niu
P, et al., J Infect Dis, 218:1249-1260, 2018, doi:10.1093/infdis/jiy311.
26.	 Evaluation of candidate vaccine approaches for MERS-CoV, Wang L, et
al., Nat Commun, 6:7712, 2015, doi:10.1038/ncomms8712.
27.	 A humanized neutralizing antibody against MERS-CoV targeting
the receptor-binding domain of the spike protein, Li Y, et al, Cell Res,
25:1237-1249, 2015, doi:10.1038/cr.2015.113.
GENengnews.com

| 41


http://www.GENengnews.com

Sartorius_May21_NeutAntiMakingTheir

Table of Contents for the Digital Edition of Sartorius_May21_NeutAntiMakingTheir

Contents
Sartorius_May21_NeutAntiMakingTheir - 1
Sartorius_May21_NeutAntiMakingTheir - 2
Sartorius_May21_NeutAntiMakingTheir - 3
Sartorius_May21_NeutAntiMakingTheir - Contents
Sartorius_May21_NeutAntiMakingTheir - 5
Sartorius_May21_NeutAntiMakingTheir - 6
Sartorius_May21_NeutAntiMakingTheir - 7
Sartorius_May21_NeutAntiMakingTheir - 8
Sartorius_May21_NeutAntiMakingTheir - 9
Sartorius_May21_NeutAntiMakingTheir - 10
Sartorius_May21_NeutAntiMakingTheir - 11
Sartorius_May21_NeutAntiMakingTheir - 12
Sartorius_May21_NeutAntiMakingTheir - 13
Sartorius_May21_NeutAntiMakingTheir - 14
Sartorius_May21_NeutAntiMakingTheir - 15
Sartorius_May21_NeutAntiMakingTheir - 16
Sartorius_May21_NeutAntiMakingTheir - 17
Sartorius_May21_NeutAntiMakingTheir - 18
Sartorius_May21_NeutAntiMakingTheir - 19
Sartorius_May21_NeutAntiMakingTheir - 20
Sartorius_May21_NeutAntiMakingTheir - 21
Sartorius_May21_NeutAntiMakingTheir - 22
Sartorius_May21_NeutAntiMakingTheir - 23
Sartorius_May21_NeutAntiMakingTheir - 24
Sartorius_May21_NeutAntiMakingTheir - 25
Sartorius_May21_NeutAntiMakingTheir - 26
Sartorius_May21_NeutAntiMakingTheir - 27
Sartorius_May21_NeutAntiMakingTheir - 28
Sartorius_May21_NeutAntiMakingTheir - 29
Sartorius_May21_NeutAntiMakingTheir - 30
Sartorius_May21_NeutAntiMakingTheir - 31
Sartorius_May21_NeutAntiMakingTheir - 32
Sartorius_May21_NeutAntiMakingTheir - 33
Sartorius_May21_NeutAntiMakingTheir - 34
Sartorius_May21_NeutAntiMakingTheir - 35
Sartorius_May21_NeutAntiMakingTheir - 36
Sartorius_May21_NeutAntiMakingTheir - 37
Sartorius_May21_NeutAntiMakingTheir - 38
Sartorius_May21_NeutAntiMakingTheir - 39
Sartorius_May21_NeutAntiMakingTheir - 40
Sartorius_May21_NeutAntiMakingTheir - 41
Sartorius_May21_NeutAntiMakingTheir - 42
https://www.nxtbookmedia.com