H2Tech - Q1 2022 - 41
INFRASTRUCTURE AND DISTRIBUTION
H2 value chain analysis comparing
different transport vectors-Part 3
N. CHODOROWSKA and M. FARHADI, Wood, Reading, UK
Part 1 of this article, published in the
Q3 2021 issue, introduced the study
concept and methodology for examining
four transportation vectors to convert
natural gas from Ras Laffan Industrial
City in northeast Qatar into an H2
product at South Hook LNG terminal
in Milford Haven, West Wales, UK. The
value chain for each option was defined,
and CAPEX and OPEX were calculated
for each unit within the process. Part 2,
published in the Q4 2021 issue, considered
H2
production with carbon capture
and the LNG value chain. The final part
of this article here will consider the ammonia
(NH3
) and methylcyclohexane
(MCH) value chains, safety considerations
and the study conclusions.
NH3
value
chain. The NH3
vector
consists of the four key process blocks
shown in FIG. 10. H2
production and
NH3 synthesis take place in Qatar before
) is a product for
to
transportation to the UK. The captured
carbon dioxide (CO2
further processing before reinjection
in Qatar. Dehydrogenation of the NH3
takes place in the UK, delivering H2
the natural gas grid.
Utilities
Power
Treated NG
feedgas
Air
water
compression
CO2
4,428 tpd
CO2
Heat
reinjection
CO2
FIG. 11. NH3 block flow diagram with material balance.
H2Tech | Q1 2022 41
BOG
BOG
loss
H2
1,819
tpd
NG
2 x SMR +
CCS units
575
tpd
H2
Power
2 x NH3
synthesis
units
3,239
tpd
NH3
CO2
FIG. 10. NH3 vector process blocks.
NG
H2 production
H2
FIG. 11 shows a more detailed block
flow diagram of the NH3
vector with the
key material balance.
The referenced tables are related to
the different process blocks in FIG. 11.
Each table shows the capacity of the individual
unit, and whether one or more
units are required based on the largest capacity
references found in the literature.
H2
production is the same steam
methane reforming (SMR) + carbon capture
and storage (CCS) process as that
described for the LNG vector, other than
a slightly larger capacity due primarily to
the loss in the NH3
cracking process. Infrastructure
and revenue from byproducts
such as natural gas liquids (NGL) and
N2
NH3 synthesis
NH3
NH3
transportation
NH3
NH3 cracking
H2
condensate have not been considered.
NH3
ral gas via an SMR producing H2
able on NH3
SMR-based H2
synthesis (TABLE 9) is based on
production processthe
Haber-Bosch synthesis loop. FIG. 12
shows typical NH3
es, including NH3
production from natu.
Although
more information is availproduction
using methane
gasification and autothermal reforming
(ATR) combined with air injection,
many NH3
stock passes through an SMR unit to
generate H2
Bosch synthesis system. Nitrogen (N2
, which then enters a Haber)
is
generated from air using an air separation
unit (ASU), which involves air compresproduction
processes employ
. Natural gas as a feedNitrogen
Utilities
Power
Storage
and
loading
3,239
tpd
NH3
Fuel
Ship
transportation
3,239
tpd
NH3
Power
Storage and
unloading
Power
3,239
tpd
NH3
cracking
NH3
489 tpd
H2
H2Tech - Q1 2022
Table of Contents for the Digital Edition of H2Tech - Q1 2022
Contents
H2Tech - Q1 2022 - Cover1
H2Tech - Q1 2022 - Cover2
H2Tech - Q1 2022 - Contents
H2Tech - Q1 2022 - 4
H2Tech - Q1 2022 - 5
H2Tech - Q1 2022 - 6
H2Tech - Q1 2022 - 7
H2Tech - Q1 2022 - 8
H2Tech - Q1 2022 - 9
H2Tech - Q1 2022 - 10
H2Tech - Q1 2022 - 11
H2Tech - Q1 2022 - 12
H2Tech - Q1 2022 - 13
H2Tech - Q1 2022 - 14
H2Tech - Q1 2022 - 15
H2Tech - Q1 2022 - 16
H2Tech - Q1 2022 - 17
H2Tech - Q1 2022 - 18
H2Tech - Q1 2022 - 19
H2Tech - Q1 2022 - 20
H2Tech - Q1 2022 - 21
H2Tech - Q1 2022 - 22
H2Tech - Q1 2022 - 23
H2Tech - Q1 2022 - 24
H2Tech - Q1 2022 - 25
H2Tech - Q1 2022 - 26
H2Tech - Q1 2022 - 27
H2Tech - Q1 2022 - 28
H2Tech - Q1 2022 - 29
H2Tech - Q1 2022 - 30
H2Tech - Q1 2022 - 31
H2Tech - Q1 2022 - 32
H2Tech - Q1 2022 - 33
H2Tech - Q1 2022 - 34
H2Tech - Q1 2022 - 35
H2Tech - Q1 2022 - 36
H2Tech - Q1 2022 - 37
H2Tech - Q1 2022 - 38
H2Tech - Q1 2022 - 39
H2Tech - Q1 2022 - 40
H2Tech - Q1 2022 - 41
H2Tech - Q1 2022 - 42
H2Tech - Q1 2022 - 43
H2Tech - Q1 2022 - 44
H2Tech - Q1 2022 - 45
H2Tech - Q1 2022 - 46
H2Tech - Q1 2022 - 47
H2Tech - Q1 2022 - 48
H2Tech - Q1 2022 - 49
H2Tech - Q1 2022 - 50
H2Tech - Q1 2022 - Cover3
H2Tech - Q1 2022 - Cover4
https://www.nxtbook.com/gulfenergyinfo/gulfpub/hydrogen-global-market-analysis-2025
https://www.nxtbook.com/gulfenergyinfo/gulfpub/h2tech-market-data-2024
https://www.nxtbook.com/nxtbooks/gulfpub/h2tech_q4_2022
https://www.nxtbook.com/nxtbooks/gulfpub/h2tech_marketdata_2023
https://www.nxtbook.com/nxtbooks/gulfpub/h2tech_q3_2022
https://www.nxtbook.com/nxtbooks/gulfpub/h2tech_electrolyzerhandbook_2022_v2
https://www.nxtbook.com/nxtbooks/gulfpub/h2tech_q2_2022
https://www.nxtbook.com/nxtbooks/gulfpub/h2tech_electrolyzerhandbook_2022
https://www.nxtbook.com/nxtbooks/gulfpub/h2tech_q1_2022
https://www.nxtbook.com/nxtbooks/gulfpub/h2tech_q4_2021
https://www.nxtbook.com/nxtbooks/gulfpub/h2tech_q3_2021
https://www.nxtbook.com/nxtbooks/gulfpub/h2tech_q2_2021
https://www.nxtbook.com/nxtbooks/gulfpub/h2tech_q1_2021
https://www.nxtbookmedia.com