Content Gazette - January 2016 - 14

Automatic Liver Segmentation Based on Shape Constraints and Deformable Graph Cut in CT Images http://dx.doi.org/10.1109/TIP.2015.2481326 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Li, X. Chen, F. Shi, W. Zhu, J. Tian, and D. Xiang
MToS: A Tree of Shapes for Multivariate Images http://dx.doi.org/10.1109/TIP.2015.2480599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Carlinet and T. Géraud
Unsupervised Feature Selection via Nonnegative Spectral Analysis and Redundancy Control http://dx.doi.org/10.1109/TIP.2015.2479560 . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Li and J. Tang
Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation http://dx.doi.org/10.1109/TIP.2015.2481327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Lu, V. E. Liong, and J. Zhou,
Variational Depth From Focus Reconstruction http://dx.doi.org/10.1109/TIP.2015.2479469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Moeller, M. Benning, C. Schönlieb, and D. Cremers
Texture Classification Using Local Pattern Based on Vector Quantization http://dx.doi.org/10.1109/TIP.2015.2476955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Pan, H. Fan, and L. Zhang
Designing Robust Sensing Matrix for Image Compression http://dx.doi.org/10.1109/TIP.2015.2479474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Li, X. Li, S. Li, H. Bai, Q. Jiang, and X. He
Extremal Regions Detection Guided by Maxima of Gradient Magnitude http://dx.doi.org/10.1109/TIP.2015.2477215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Faraji, J. Shanbehzadeh, K. Nasrollahi, and T. B. Moeslund
Robust Matching Cost Function for Stereo Correspondence Using Matching by Tone Mapping and Adaptive Orthogonal Integral
Image http://dx.doi.org/10.1109/TIP.2015.2481702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Q. Dinh, V. D. Nguyen, and J. W. Jeon
Edge-Preserving Decomposition-Based Single Image Haze Removal http://dx.doi.org/10.1109/TIP.2015.2482903 . . . . . . . . . . . . . . . . Z. Li and J. Zheng
Common Visual Pattern Discovery via Nonlinear Mean Shift Clustering http://dx.doi.org/10.1109/TIP.2015.2481701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Wang, D. Tang, Y. Guo, and M. N. Do
A General-Thresholding Solution for lp(0 < p < 1) Regularized CT Reconstruction http://dx.doi.org/10.1109/TIP.2015.2468175 . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Miao and H. Yu
Image-Specific Prior Adaptation for Denoising http://dx.doi.org/10.1109/TIP.2015.2473098 . . . . . . . . . . X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang
DASH-N: Joint Hierarchical Domain Adaptation and Feature Learning http://dx.doi.org/10.1109/TIP.2015.2479405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. V. Nguyen, H. T. Ho, V. M. Patel, and R. Chellappa
Layered Compression for High-Precision Depth Data http://dx.doi.org/10.1109/TIP.2015.2481324 . . . . D. Miao, J. Fu, Y. Lu, S. Li, and C. W. Chen
Transforms for Intra Prediction Residuals Based on Prediction Inaccuracy Modeling http://dx.doi.org/10.1109/TIP.2015.2481328 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Cai and J. S. Lim
Modeling, Prediction, and Reduction of 3D Crosstalk in Circular Polarized Stereoscopic LCDs http://dx.doi.org/10.1109/TIP.2015.2466114 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Zeng, A. E. Robinson, and T. Q. Nguyen
Inpainting for Fringe Projection Profilometry Based on Geometrically Guided Iterative Regularization http://dx.doi.org/10.1109/TIP.2015.2481707 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Budianto and D. P. K. Lun
Cross-Modal Subspace Learning via Pairwise Constraints http://dx.doi.org/10.1109/TIP.2015.2466106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. He, M. Zhang, L. Wang, Y. Ji, and Q. Yin
Image Segmentation With Cage Active Contours http://dx.doi.org/10.1109/TIP.2015.2472298 . . . . . . . . . . . . . . . L. Garrido, M. Guerrieri, and L. Igual
RISM: Single-Modal Image Registration via Rank-Induced Similarity Measure http://dx.doi.org/10.1109/TIP.2015.2479462 . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Ghaffari and E. Fatemizadeh
The STOne Transform: Multi-Resolution Image Enhancement and Compressive Video http://dx.doi.org/10.1109/TIP.2015.2474697 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Goldstein, L. Xu, K. F. Kelly, and R. Baraniuk
Compressed Image Quality Metric Based on Perceptually Weighted Distortion http://dx.doi.org/10.1109/TIP.2015.2481319 . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Hu, L. Jin, H. Wang, Y. Zhang, S. Kwong, and C.-C. J. Kuo
High-Resolution Light Field Capture With Coded Aperture http://dx.doi.org/10.1109/TIP.2015.2468179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y.-P. Wang, L.-C. Wang, D.-H. Kong, and B.-C. Yin
A Boosted Multi-Task Model for Pedestrian Detection With Occlusion Handling http://dx.doi.org/10.1109/TIP.2015.2483376 . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Zhu and Y. Peng
Encoding Color Information for Visual Tracking: Algorithms and Benchmark http://dx.doi.org/10.1109/TIP.2015.2482905 . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Liang, E. Blasch, and H. Ling
Kernelized Saliency-Based Person Re-Identification Through Multiple Metric Learning http://dx.doi.org/10.1109/TIP.2015.2487048 . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Martinel, C. Micheloni, and G. L. Foresti
Multimodal Deep Autoencoder for Human Pose Recover http://dx.doi.org/10.1109/TIP.2015.2487860y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Hong, J. Yu, J. Wan, D. Tao, and M. Wang
Normalized Cut-Based Saliency Detection by Adaptive Multi-Level Region Merging http://dx.doi.org/10.1109/TIP.2015.2485782 . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Fu, C. Gong, I. Y.-H. Gu, and J. Yang
Dimensionality Reduction by Integrating Sparse Representation and Fisher Criterion and Its Applications
http://dx.doi.org/10.1109/TIP.2015.2479559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Gao, Q. Wang, Y. Huang, X. Gao, X. Hong, and H. Zhang
Interface Detection Using a Quenched-Noise Version of the Edwards-Wilkinson Equation http://dx.doi.org/10.1109/TIP.2015.2484061 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Turpeinen, M. Myllys, P. Kekäläinen, and J. Timonen
Salient Object Detection: A Benchmark http://dx.doi.org/10.1109/TIP.2015.2487833 . . . . . . . . . . . . . . . . . . . . . A. Borji, M.-M. Cheng, H. Jiang, and J. Li

www.signalprocessingsociety.org

[14]

january 2016

5315
5330
5343
5356
5369
5379
5389
5401
5416
5432
5442
5455
5469
5479
5492
5505
5516
5531
5543
5557
5567
5581
5594
5609
5619
5630
5645
5659
5671
5684
5696
5706


http://dx.doi.org/10.1109/TIP.2015.2481326 http://dx.doi.org/10.1109/TIP.2015.2480599 http://dx.doi.org/10.1109/TIP.2015.2479560 http://dx.doi.org/10.1109/TIP.2015.2481327 http://dx.doi.org/10.1109/TIP.2015.2479469 http://dx.doi.org/10.1109/TIP.2015.2476955 http://dx.doi.org/10.1109/TIP.2015.2479474 http://dx.doi.org/10.1109/TIP.2015.2477215 http://dx.doi.org/10.1109/TIP.2015.2481702 http://dx.doi.org/10.1109/TIP.2015.2482903 http://dx.doi.org/10.1109/TIP.2015.2481701 http://dx.doi.org/10.1109/TIP.2015.2468175 http://dx.doi.org/10.1109/TIP.2015.2473098 http://dx.doi.org/10.1109/TIP.2015.2479405 http://dx.doi.org/10.1109/TIP.2015.2481324 http://dx.doi.org/10.1109/TIP.2015.2481328 http://dx.doi.org/10.1109/TIP.2015.2466114 http://dx.doi.org/10.1109/TIP.2015.2481707 http://dx.doi.org/10.1109/TIP.2015.2466106 http://dx.doi.org/10.1109/TIP.2015.2472298 http://dx.doi.org/10.1109/TIP.2015.2479462 http://dx.doi.org/10.1109/TIP.2015.2474697 http://dx.doi.org/10.1109/TIP.2015.2481319 http://dx.doi.org/10.1109/TIP.2015.2468179 http://dx.doi.org/10.1109/TIP.2015.2483376 http://dx.doi.org/10.1109/TIP.2015.2482905 http://dx.doi.org/10.1109/TIP.2015.2487048 http://dx.doi.org/10.1109/TIP.2015.2487860 http://dx.doi.org/10.1109/TIP.2015.2485782 http://dx.doi.org/10.1109/TIP.2015.2479559 http://dx.doi.org/10.1109/TIP.2015.2484061 http://dx.doi.org/10.1109/TIP.2015.2487833 http://www.signalprocessingsociety.org

Table of Contents for the Digital Edition of Content Gazette - January 2016

Content Gazette - January 2016 - Cover1
Content Gazette - January 2016 - Cover2
Content Gazette - January 2016 - 1
Content Gazette - January 2016 - 2
Content Gazette - January 2016 - 3
Content Gazette - January 2016 - 4
Content Gazette - January 2016 - 5
Content Gazette - January 2016 - 6
Content Gazette - January 2016 - 7
Content Gazette - January 2016 - 8
Content Gazette - January 2016 - 9
Content Gazette - January 2016 - 10
Content Gazette - January 2016 - 11
Content Gazette - January 2016 - 12
Content Gazette - January 2016 - 13
Content Gazette - January 2016 - 14
Content Gazette - January 2016 - 15
Content Gazette - January 2016 - 16
Content Gazette - January 2016 - 17
Content Gazette - January 2016 - 18
Content Gazette - January 2016 - 19
Content Gazette - January 2016 - 20
Content Gazette - January 2016 - 21
Content Gazette - January 2016 - 22
Content Gazette - January 2016 - 23
Content Gazette - January 2016 - 24
Content Gazette - January 2016 - 25
Content Gazette - January 2016 - 26
Content Gazette - January 2016 - 27
Content Gazette - January 2016 - 28
Content Gazette - January 2016 - 29
Content Gazette - January 2016 - 30
Content Gazette - January 2016 - 31
Content Gazette - January 2016 - 32
Content Gazette - January 2016 - 33
Content Gazette - January 2016 - 34
Content Gazette - January 2016 - 35
Content Gazette - January 2016 - 36
Content Gazette - January 2016 - 37
Content Gazette - January 2016 - 38
Content Gazette - January 2016 - 39
Content Gazette - January 2016 - 40
Content Gazette - January 2016 - 41
Content Gazette - January 2016 - 42
Content Gazette - January 2016 - 43
Content Gazette - January 2016 - 44
Content Gazette - January 2016 - Cover3
Content Gazette - January 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202109
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202108
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202107
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202106
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202105
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202104
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202103
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202102
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202101
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202012
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202011
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202010
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202009
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202008
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202007
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202006
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202005
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202004
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202003
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202002
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_202001
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201912
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201911
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201910
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201909
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201908
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201907
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201906
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201905
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201904
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201903
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201902
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201901
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201812
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201811
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201810
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201809
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201808
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201807
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201806
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201805
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201804
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201803
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201802
https://www.nxtbook.com/nxtbooks/ieee/contentgazette_201801
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1217
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1117
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1017
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0917
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0817
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0717
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0617
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0517
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0417
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0317
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0217
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0117
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1216
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1116
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1016
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0916
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0816
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0716
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0616
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0516
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0416
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0316
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0216
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0116
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1215
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1115
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1015
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0915
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0815
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0715
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0615
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0515
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0415
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0315
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0215
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0115
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1214
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1114
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1014
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0914
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0814
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0714
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0614
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0514
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0414
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0314
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0214
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0114
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1213
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1113
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1013
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0913
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0813
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0713
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0613
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0513
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0413
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0313
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0213
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0113
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1212
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1112
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1012
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0912
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0812
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0712
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0612
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0512
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0412
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0312
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0212
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0112
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1211
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1111
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_1011
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0911
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0811
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0711
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0611
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0511
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0411
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0311
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0211
https://www.nxtbook.com/nxtbooks/ieee/content_gazette_0111
https://www.nxtbookmedia.com