IEEE Solid-States Circuits Magazine - Fall 2020 - 31

[32]	 B. Martineau and F. Voineau, " Plastic is
fantastic: How a cheap material could
become the next high data rate communication channel, " in Proc. IMS Workshop,
2018.
[33]	 M. D. Wit, Y. Zhang, and P. Reynaert,
" Analysis and design of a foam-cladded
PMF link with phase tuning in 28-nm
CMOS, " IEEE J. Solid-State Circuits, vol.
54, no. 7, pp. 1960-1969, July 2019. doi:
10.1109/JSSC.2019.2907163.
[34]	 Y. Kim, L. Nan, J. Cong, and M.-C. F.
Chang, " High-speed mm-wave data-link
based on hollow plastic cable and CMOS
transceiver, " IEEE Microw. Compon. Lett.,
vol. 23, no. 12, pp. 674-676, Dec. 2013.
doi: 10.1109/LMWC.2013.2283862.
[35]	 J. W. Holloway, L. Boglione, T. M. Hancock, and R. Han, " A fully integrated
broadband sub-mmWave chip-to-chip
interconnect, " IEEE Trans. Microw. Theory Techn., vol. 65, no. 7, pp. 2373-2386,
2017. doi: 10.1109/TMTT.2017.2660491.
[36]	 W.-L . Tsai et al., " Novel broadband
transition for rectangular dielectric
waveguide to planar circuit board at D
band, " in Proc. 2018 IEEE MTT-S Int. Microw. Symp., pp. 386-389. doi: 10.1109/
MWSYM.2018.8439847.
[37]	 B. Yu, Y. Liu, Y. Ye, J. Ren, X. Liu, and Q.
J. Gu, " High efficiency micromachined
sub-THz channels for low cost interconnect for planar integrated circuits, "
IEEE Trans. Microw. Theory Techn., vol.
64, no. 1, pp. 96 -104, Jan. 2016. doi:
10.1109/TMTT.2015.2504443.
[38]	 B. Yu, Y. Liu, X. Hu, X. Ren, X. Liu, and Q.
J. Gu, " Micromachined silicon channels
for THz interconnect, " in Proc. WAMICON 2014, pp. 1-3. doi: 10.1109/WAMICON.2014.6857799.
[39]	 B. Yu, Y. Ye, X. Ding, Y. Liu, X. Liu, and
Q. J. Gu, " Dielectric waveguide based
multi-mode sub-THz interconnect channel for high data-rate high bandwidthdensity planar chip-to-chip communication, " in Proc. 2017 IEEE Int. Microw.
Symp. IMS, pp. 1750-1752. doi: 10.1109/
MWSYM.2017.8058983.
[40]	 B. Yu, Y. Liu, Y. Ye, X. Liu, and Q. J. Gu,
" Low-loss and broadband sub-THz interconnect for chip-to-chip communication, " IEEE Microw. Wireless Compon.
Lett., vol. 26, no. 7, pp. 478-480, 2016.
doi: 10.1109/LMWC.2016.2574837.
[41]	 Q. J. Gu, B Yu, X Ding, Y Ye, X Liu, and Z Xu,
" THz interconnect for inter-/intra-chip
communication, " in Proc. SPIE Defense
+ Commercial Sensing, in Micro Nanotechnol. Sensors, Syst., Appl. XI, vol.
10,982, Art. no 109822R, May 13, 2019.
doi: 10.1117/12.2518567.
[42]	 M. Born and E. Wolf, Principles of Optics.
Cambridge, U.K.: Cambridge Univ. Press,
1999.
[43]	 R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective.
London: Academic, 1998.
[44]	 E. Johnson, " Physical limitations on frequency and power parameters of transistors, " in Proc. IRE Int. Conv. Rec., vol.
13, Mar. 1965, pp. 27-34. doi: 10.1109/
IRECON.1965.1147520.
[45]	 F. Bruccoleri, E. A. M. Klumperink, and
B. Nauta, " Wide-band CMOS low-noise
amplifier exploiting thermal noise canceling, " IEEE J. Solid-State Circuits, vol.
39, no. 2, pp. 275-282, Feb. 2004. doi:
10.1109/JSSC.2003.821786.
[46]	 D. Murphy, H. Darabi, and H. Xu, " A noisecancelling receiver resilient to large harmonic blockers, " IEEE J. Solid-State Circuits, vol. 50, no. 6, pp. 1336-1350, June
2015. doi: 10.1109/JSSC.2015.2417808.

	

[47]	 B. Razavi, RF Microelectronics, 2nd ed.
Englewood Cliffs, NJ: Prentice Hall, 2012.
[48]	 T. L e e , T h e D e s i g n o f C M O S R a d i o Frequency Integrated Circuits, 2nd ed.
Cambridge, U.K.: Cambridge Univ. Press,
2009
[49]	 M. N. Afsar and K. J. Button, " Precise millimeter-wave measurements of complex
refractive index, complex dielectric permittivity and loss tangent of GaAs, Si,
Si02, A1203, BeO, macor, and glass, " IEEE
Trans. Microw. Theory Techn., vol. 31, no.
2, pp. 217-223, Feb. 1983. doi: 10.1109/
TMTT.1983.1131460.
[50]	 P. H. Bolivar et al., " Measurement of the
dielectric constant and loss tangent
of high dielectric-constant materials at
terahertz frequencies, " IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp.
1062-1066, Apr. 2003. doi: 10.1109/TMTT.
2003.809693.
[51]	 D. E. Aspnes and A. A. Studna, " Dielectric functions and optical parameters of
Si, Ge, GaP, GaAs, GaSb, InP, InAs, and
InSb from 1.5 to 6.0 eV, " Phys. Rev., vol.
27, no. 2, pp. 985-1009, Jan. 1983. doi:
10.1103/PhysRevB.27.985.
[52]	 E. A. J. Marcatili, " Dielectric rectangular waveguide and directional coupler
for integrated optics, " Bell Syst. Tech.,
vol. 48, no. 7, pp. 2071-2012, 1969. doi:
10.1002/j.1538-7305.1969.tb01166.x.
[53]	 H . K o g e l n i k , T h e o r y o f D i e l e c t r i c
Waveguides. Berlin: Springer-Verlag,
1975.
[54]	 K. Ogusu, " Numerical analysis of the
rectangular dielectric waveguide and
its modifications, " IEEE Trans. Microw. Theory Techn., vol. 25, no. 11,
pp. 874-885, Nov. 1977. doi: 10.1109/
TMTT.1977.1129235.
[55]	 D. M. Pozar, Microwave Engineering, 4th
ed. Hoboken, NJ: Wiley, 2011.
[56]	 S. Orfanidis, Electromagnetic Waves and
Antennas. U.K.: Pearson Education Limited, 1999.
[57]	 S. Fukuda et al., " A 12.5+12.5 Gb/s full
duplex plastic waveguide interconnect, "
IEEE J. Solid-State Circuits, vol. 46, no. 12,
pp. 3113-3125, Dec. 2011. doi: 10.1109/
JSSC.2011.2168870.
[58]	 A. Arbabian, N. Dolatsha, and N. Saiz,
" Fully packaged millimetre-wave dielectric waveguide with multimodal
excitation, " Electron. Lett., vol. 51, no.
17, pp. 1339-1341, 2015. doi: 10.1049/
el.2015.2306.
[59]	 S. Ramachandran, Fiber Based Dispersion
Compensation. Berlin: Springer-Verlag,
2007.
[60]	 J. Hecht, " As fiber optic systems performance improves, so must dispersion
compensation, " Laser Focus World, vol.
38, no. 12, pp. 103-106, 2002.
[61]	 D. Pastor, D. Ortega, V. Tatay, and J.
Marti', " Design of apodized linearly
chirped fiber gratings for dispersion
compensation, " IEEE J. Lightw. Technol.,
vol. 14, no. 11, pp. 2581-2588, 1996. doi:
10.1109/50.548158.
[62]	 H. Liu, H. Liu, G. Peng, and T. W. Whitbread, " Tunable dispersion using linearly chirped polymer optical fiber Bragg
gratings with fixed center wavelength, "
IEEE Photon. Technol. Lett., vol. 17, no.
2, pp. 411-413, 2005. doi: 10.1109/LPT.
2004.839378.
[63]	 J. A. Rogers, B. J. Eggleton, R. J. Jackman,
G. R. Kowach, and T. A. Strasser, " Dual
on-fiber thin film heaters for fiber gratings with independently adjust chirp
and wavelength, " Opt. Lett., vol. 24, no.
19, pp. 1328-1330, 1999. doi: 10.1364/
OL.24.001328.

[64]	 Y. Chun and T. Anand, " An ISI-resilient
data encoding for equalizer-free wireline communication-Dicode encoding
and error correction for 24.2-dB loss
with 2.56 pJ/bit, " IEEE J. Solid-State Circuits, vol. 55, no. 3, pp. 567-579, 2020.
doi: 10.1109/JSSC.2019.2959487.
[65]	 J. G. Proakis, Digital Communications,
3rd ed. New York: McGraw-Hill, 1995.
[66]	 A. Eghbali, H. Johansson, O. Gustafsson,
and S. J. Savory, " Optimal least-squares
FIR digital filters for compensation of
chromatic dispersion in digital coherent
optical receivers, " J. Lightw. Technol.,
vol. 32, no. 8, pp. 1449-1456, Apr. 2014.
doi: 10.1109/JLT.2014.2307916.
[67]	 T. Xu et al., " Chromatic dispersion compensation in coherent transmission system using digital filters, " Opt. Express,
vol. 18, no. 15, pp. 16,243-16,257, July
2010. doi: 10.1364/OE.18.016243.
[68]	 P. Upadhyaya et al., " A fully adaptive
19-to-56Gb/s PAM-4 wireline transceiver
with a configurable ADC in 16nm FinFET, " in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC), Feb. 2018, pp. 108-110.
doi: 10.1109/ISSCC.2018.8310207.
[69]	 J.-W. Nam and M. S.-W. Chen, " A 12.8Gbaud ADC-based wireline receiver
with embedded IIR equalizer, " IEEE J.
Solid-State Circuits, vol. 55, no. 3, pp.
557-566, 2020. doi: 10.1109/JSSC.2019.
2956395.
[70]	 A. Ramachandran, A. Natarajan, and T.
Anand, " 29.4 A 16Gb/s 3.6pJ/b wireline
transceiver with phase domain equalization scheme: Integrated pulse width
modulation (iPWM) in 65nm CMOS, " in
Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2017, pp. 488-489. doi: 10.1109/
ISSCC.2017.7870474.
[71]	 Z. Toprak-Deniz et al., " A 128Gb/s 1.3pJ/b
PAM-4 transmitter with reconfigurable
3-tap FFE in 14nm CMOS, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC), 2019,
pp. 122-124. doi: 10.1109/ISSCC.2019.
8662479.
[72]	 C. Menolfi et al., " A 112Gb/s 2.6pJ/b
8-Tap FFE PAM-4 SST TX in 14nm CMOS, "
in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2018, pp. 104-106. doi: 10.1109/
ISSCC.2018.8310205.
[73]	 J. Kim et al., " A 112Gb/s PAM-4 transmitter with 3-Tap FFE in 10nm CMOS, " in
Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2018, pp. 102-104. doi: 10.1109/
ISSCC.2018.8310204.
[74]	 D. Yoo et al., " 6.8 A 36Gb/s adaptive baudrate CDR with CTLE and 1-Tap DFE in
28nm CMOS, " in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), 2019, pp. 126-128.
doi: 10.1109/ISSCC.2019.8662379.
[75]	 L. Wang et al., " A 64Gb/s PAM-4 transceiver utilizing an adaptive threshold ADC in 16nm FinFET, " in Proc. IEEE
Int. Solid-State Circuits Conf. (ISSCC),
2018, pp. 110 -112. doi: 10.1109/ISSCC.2018.8310208.
[76]	 P.-J. Peng et al., " 6.1 A 56Gb/s PAM-4/
NRZ transceiver in 40nm CMOS, " in
Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2017, pp. 110-111. doi: 10.1109/
ISSCC.2017.7870285.
[77]	 J. Han et al., " 6.2 A 60Gb/s 288mW NRZ
transceiver with adaptive equalization and baud-rate clock and data recovery in 65nm CMOS technology, " in
Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2017, pp. 112-113. doi: 10.1109/
ISSCC.2017.7870286.
[78]	 A. N. More, " Group delay equalization in
sub-THz dielectric waveguide, " M.S. thesis, ECE Dept., Univ. of California, Davis,
CA, 2018.

	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

FA L L 2 0 2 0	

31



IEEE Solid-States Circuits Magazine - Fall 2020

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2020

Contents
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2020 - Contents
IEEE Solid-States Circuits Magazine - Fall 2020 - 2
IEEE Solid-States Circuits Magazine - Fall 2020 - 3
IEEE Solid-States Circuits Magazine - Fall 2020 - 4
IEEE Solid-States Circuits Magazine - Fall 2020 - 5
IEEE Solid-States Circuits Magazine - Fall 2020 - 6
IEEE Solid-States Circuits Magazine - Fall 2020 - 7
IEEE Solid-States Circuits Magazine - Fall 2020 - 8
IEEE Solid-States Circuits Magazine - Fall 2020 - 9
IEEE Solid-States Circuits Magazine - Fall 2020 - 10
IEEE Solid-States Circuits Magazine - Fall 2020 - 11
IEEE Solid-States Circuits Magazine - Fall 2020 - 12
IEEE Solid-States Circuits Magazine - Fall 2020 - 13
IEEE Solid-States Circuits Magazine - Fall 2020 - 14
IEEE Solid-States Circuits Magazine - Fall 2020 - 15
IEEE Solid-States Circuits Magazine - Fall 2020 - 16
IEEE Solid-States Circuits Magazine - Fall 2020 - 17
IEEE Solid-States Circuits Magazine - Fall 2020 - 18
IEEE Solid-States Circuits Magazine - Fall 2020 - 19
IEEE Solid-States Circuits Magazine - Fall 2020 - 20
IEEE Solid-States Circuits Magazine - Fall 2020 - 21
IEEE Solid-States Circuits Magazine - Fall 2020 - 22
IEEE Solid-States Circuits Magazine - Fall 2020 - 23
IEEE Solid-States Circuits Magazine - Fall 2020 - 24
IEEE Solid-States Circuits Magazine - Fall 2020 - 25
IEEE Solid-States Circuits Magazine - Fall 2020 - 26
IEEE Solid-States Circuits Magazine - Fall 2020 - 27
IEEE Solid-States Circuits Magazine - Fall 2020 - 28
IEEE Solid-States Circuits Magazine - Fall 2020 - 29
IEEE Solid-States Circuits Magazine - Fall 2020 - 30
IEEE Solid-States Circuits Magazine - Fall 2020 - 31
IEEE Solid-States Circuits Magazine - Fall 2020 - 32
IEEE Solid-States Circuits Magazine - Fall 2020 - 33
IEEE Solid-States Circuits Magazine - Fall 2020 - 34
IEEE Solid-States Circuits Magazine - Fall 2020 - 35
IEEE Solid-States Circuits Magazine - Fall 2020 - 36
IEEE Solid-States Circuits Magazine - Fall 2020 - 37
IEEE Solid-States Circuits Magazine - Fall 2020 - 38
IEEE Solid-States Circuits Magazine - Fall 2020 - 39
IEEE Solid-States Circuits Magazine - Fall 2020 - 40
IEEE Solid-States Circuits Magazine - Fall 2020 - 41
IEEE Solid-States Circuits Magazine - Fall 2020 - 42
IEEE Solid-States Circuits Magazine - Fall 2020 - 43
IEEE Solid-States Circuits Magazine - Fall 2020 - 44
IEEE Solid-States Circuits Magazine - Fall 2020 - 45
IEEE Solid-States Circuits Magazine - Fall 2020 - 46
IEEE Solid-States Circuits Magazine - Fall 2020 - 47
IEEE Solid-States Circuits Magazine - Fall 2020 - 48
IEEE Solid-States Circuits Magazine - Fall 2020 - 49
IEEE Solid-States Circuits Magazine - Fall 2020 - 50
IEEE Solid-States Circuits Magazine - Fall 2020 - 51
IEEE Solid-States Circuits Magazine - Fall 2020 - 52
IEEE Solid-States Circuits Magazine - Fall 2020 - 53
IEEE Solid-States Circuits Magazine - Fall 2020 - 54
IEEE Solid-States Circuits Magazine - Fall 2020 - 55
IEEE Solid-States Circuits Magazine - Fall 2020 - 56
IEEE Solid-States Circuits Magazine - Fall 2020 - 57
IEEE Solid-States Circuits Magazine - Fall 2020 - 58
IEEE Solid-States Circuits Magazine - Fall 2020 - 59
IEEE Solid-States Circuits Magazine - Fall 2020 - 60
IEEE Solid-States Circuits Magazine - Fall 2020 - 61
IEEE Solid-States Circuits Magazine - Fall 2020 - 62
IEEE Solid-States Circuits Magazine - Fall 2020 - 63
IEEE Solid-States Circuits Magazine - Fall 2020 - 64
IEEE Solid-States Circuits Magazine - Fall 2020 - 65
IEEE Solid-States Circuits Magazine - Fall 2020 - 66
IEEE Solid-States Circuits Magazine - Fall 2020 - 67
IEEE Solid-States Circuits Magazine - Fall 2020 - 68
IEEE Solid-States Circuits Magazine - Fall 2020 - 69
IEEE Solid-States Circuits Magazine - Fall 2020 - 70
IEEE Solid-States Circuits Magazine - Fall 2020 - 71
IEEE Solid-States Circuits Magazine - Fall 2020 - 72
IEEE Solid-States Circuits Magazine - Fall 2020 - 73
IEEE Solid-States Circuits Magazine - Fall 2020 - 74
IEEE Solid-States Circuits Magazine - Fall 2020 - 75
IEEE Solid-States Circuits Magazine - Fall 2020 - 76
IEEE Solid-States Circuits Magazine - Fall 2020 - 77
IEEE Solid-States Circuits Magazine - Fall 2020 - 78
IEEE Solid-States Circuits Magazine - Fall 2020 - 79
IEEE Solid-States Circuits Magazine - Fall 2020 - 80
IEEE Solid-States Circuits Magazine - Fall 2020 - 81
IEEE Solid-States Circuits Magazine - Fall 2020 - 82
IEEE Solid-States Circuits Magazine - Fall 2020 - 83
IEEE Solid-States Circuits Magazine - Fall 2020 - 84
IEEE Solid-States Circuits Magazine - Fall 2020 - 85
IEEE Solid-States Circuits Magazine - Fall 2020 - 86
IEEE Solid-States Circuits Magazine - Fall 2020 - 87
IEEE Solid-States Circuits Magazine - Fall 2020 - 88
IEEE Solid-States Circuits Magazine - Fall 2020 - 89
IEEE Solid-States Circuits Magazine - Fall 2020 - 90
IEEE Solid-States Circuits Magazine - Fall 2020 - 91
IEEE Solid-States Circuits Magazine - Fall 2020 - 92
IEEE Solid-States Circuits Magazine - Fall 2020 - 93
IEEE Solid-States Circuits Magazine - Fall 2020 - 94
IEEE Solid-States Circuits Magazine - Fall 2020 - 95
IEEE Solid-States Circuits Magazine - Fall 2020 - 96
IEEE Solid-States Circuits Magazine - Fall 2020 - 97
IEEE Solid-States Circuits Magazine - Fall 2020 - 98
IEEE Solid-States Circuits Magazine - Fall 2020 - 99
IEEE Solid-States Circuits Magazine - Fall 2020 - 100
IEEE Solid-States Circuits Magazine - Fall 2020 - 101
IEEE Solid-States Circuits Magazine - Fall 2020 - 102
IEEE Solid-States Circuits Magazine - Fall 2020 - 103
IEEE Solid-States Circuits Magazine - Fall 2020 - 104
IEEE Solid-States Circuits Magazine - Fall 2020 - 105
IEEE Solid-States Circuits Magazine - Fall 2020 - 106
IEEE Solid-States Circuits Magazine - Fall 2020 - 107
IEEE Solid-States Circuits Magazine - Fall 2020 - 108
IEEE Solid-States Circuits Magazine - Fall 2020 - 109
IEEE Solid-States Circuits Magazine - Fall 2020 - 110
IEEE Solid-States Circuits Magazine - Fall 2020 - 111
IEEE Solid-States Circuits Magazine - Fall 2020 - 112
IEEE Solid-States Circuits Magazine - Fall 2020 - 113
IEEE Solid-States Circuits Magazine - Fall 2020 - 114
IEEE Solid-States Circuits Magazine - Fall 2020 - 115
IEEE Solid-States Circuits Magazine - Fall 2020 - 116
IEEE Solid-States Circuits Magazine - Fall 2020 - 117
IEEE Solid-States Circuits Magazine - Fall 2020 - 118
IEEE Solid-States Circuits Magazine - Fall 2020 - 119
IEEE Solid-States Circuits Magazine - Fall 2020 - 120
IEEE Solid-States Circuits Magazine - Fall 2020 - 121
IEEE Solid-States Circuits Magazine - Fall 2020 - 122
IEEE Solid-States Circuits Magazine - Fall 2020 - 123
IEEE Solid-States Circuits Magazine - Fall 2020 - 124
IEEE Solid-States Circuits Magazine - Fall 2020 - 125
IEEE Solid-States Circuits Magazine - Fall 2020 - 126
IEEE Solid-States Circuits Magazine - Fall 2020 - 127
IEEE Solid-States Circuits Magazine - Fall 2020 - 128
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com