IEEE Solid-States Circuits Magazine - Fall 2020 - 32

[79]	 R. M. Foster, " A reactance theorem, " Bell
Syst. Tech. J., vol. 3, no. 2, pp. 259-267,
1924. doi: 10.1002/j.1538-7305.1924.
tb01358.x.
[80]	 J. Linvill, " Transistor negative-impedance converters, " Proc. IRE, vol. 41, no.
6, pp. 725-729, 1953. doi: 10.1109/JRPROC.1953.274251.
[81]	 H. Gao et al., " A 6.5-12GHz balanced
variable gain low-noise amplifier with
frequency-selective non-foster gain
equali--zation technique, " in Proc. IEEE Int.
Microw. Symp., 2020.
[82]	 S. E. Sussman-Fort and R. M. Rudish,
" Progress in use of non-foster impedances to match electrically-small antennas
and arrays, " presented at the Antenna
Application Symposium, Allerton Park,
IL, Sept. 21-23, 2005.
[83]	 S. Lee et al., " A broadband GaN pHEMT
power amplifier using non-foster matching, " IEEE Trans. Microw. Theory Techn.,
vol. 63, no. 12, pp. 4406-4414, 2015. doi:
10.1109/TMTT.2015.2495106.
[84]	 H. Mirzaei et al., " Realizing non-foster
reactive elements using negativegroup delay networks, " IEEE Trans. Microw. Theory Techn., vol. 61, no. 12,
pp. 4322-4332, 2013. doi: 10.1109/
TMTT.2013.2281967.
[85]	 E. Seok et al., " A 410 GHz CMOS pushpush oscillator with an on-chip patch
antenna, " in Proc. IEEE Int. Solid-State
Circuits Conf. Dig. Tech. Papers, 2008,
pp. 472-629. doi: 10.1109/ISSCC.2008.
4523262.
[86]	 Q. J. Gu et al., " Generating terahertz
signals in 65nm CMOS with negativeresistance resonator boosting and selective harmonic suppression, " in Proc. IEEE
Symp. VLSI Circuits, 2010, pp. 109-110.
doi: 10.1109/VLSIC.2010.5560335.
[87]	 O. Momeni and E. Afshari, " High power
terahertz and milimeter-wave oscillator design: A systematic approach, "
IEEE J. Solid-State Circuits, vol. 46, no.
3, pp. 583-597, Mar. 2011. doi: 10.1109/
JSSC.2011.2104553.
[88]	 B. Heinemann et al., " SiGe HBT technology with fT/fmax of 300 GHz/500
GHz and 2.0 psCMLgate delay, " in Proc.
IEEE Int. Electron Devices Meeting, Dec.
2010, pp. 30.5.1-30.5.4. doi: 10.1109/
IEDM.2010.5703452.
[89]	 R. L. Schmid, A. Ç. Ulusoy, S. Zeinolabedinzadeh, and J. D. Cressler, " A comparison of the degradation in RF performance due to device interconnects in
advanced SiGe HBT and CMOS technologies, " IEEE Trans. Electron Devices, vol.
62, no. 6, pp. 1803-1810, June 2015. doi:
10.1109/TED.2015.2420597.
[90]	 S. Jameson, E. Halpern, and E. Socher,
" 20.4 A 300GHz wirelessly locked 2×3
array radiating 5.4dBm with 5.1% DC-toRF efficiency in 65nm CMOS, " in Proc.
IEEE Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2016, pp. 348-349. doi: 10.1109/
ISSCC.2016.7418050.
[91]	 Y. Ye, B. Yu, and Q. J. Gu, " A 165GHz OOK
transmitter with 10.6% peak DC-to-RF
efficiency in 65nm bulk CMOS, " in Proc.
IEEE Int. Microw. Symp., 2016, pp. 1-4.
doi: 10.1109/MWSYM.2016.7540223.
[92]	 Y. Ye, B. Yu, and Q. J. Gu, " A 165 GHz
transmitter with 10.6% peak DC-to-RF
efficiency and 0.68 pJ/bit energy efficiency on 65 nm bulk CMOS, " IEEE Trans.
Microw. Theory Techn., vol. 64, no. 12,
pp. 4573-4584, Dec. 2016. doi: 10.1109/
TMTT.2016.2623701.
[93]	 P. Hillger, J. Grzyb, R. Jain, and U. R. Pfeiffer, " Terahertz imaging and sensing ap-

32	

FA L L 2 0 2 0	

plications with silicon-based technologies, " IEEE Trans. THz Sci. Technol., vol.
9, no. 1, pp. 1-19, 2019. doi: 10.1109/
TTHZ.2018.2884852.
[94]	 R. Han et al., " A SiGe terahertz heterodyne imaging transmitter with 3.3 mW
radiated power and fully-integrated
phase-locked loop, " IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 2935-2947, Dec.
2015. doi: 10.1109/JSSC.2015.2471847.
[95]	 K. Guo and P. Reynaert, " 29.2 A 0.59THz
beam-steerable coherent radiator array with 1mW radiated power and
24.1dBm EIRP in 40nm CMOS, " in Proc.
IEEE Int. Solid-State Circuits Conf. (ISSCC), 2020, pp. 442-444. doi: 10.1109/
ISSCC19947.2020.9063139.
[96]	 R. Jain, P. Hillger, J. Grzyb, and U. R. Pfeiffer, " 29.1 A 0.42THz 9.2dBm 64-Pixel
source-array SoC with spatial modulation diversity for computational terahertz imaging, " in Proc. IEEE Int. SolidState Circuits Conf. (ISSCC), Feb. 2020, pp.
440-442. doi: 10.1109/ISSCC19947.2020.
9063025.
[97]	 N. Buadana, S. Jameson, E. Socher, " A
280GHz +9dBm TRP dense 2D multi
port radiator in 65nm CMOS, " in Proc.
IEEE Radio Freq. Integr. Circuits Symp.
(RFIC), 2018, pp. 248-251. doi: 10.1109/
RFIC.2018.8428967.
[98]	 H. Saeidi, S. Venkatesh, C. Reddy Chappidi, T. Sharma, C. Zhu, and K. Sengupta,
" 29.9 A 4×4 distributed multi-layer oscillator network for harmonic injection
and THz beamforming with 14dBm EIRP
at 416GHz in a lensless 65nm CMOS IC, "
in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2020, pp. 256-258. doi: 10.1109/
ISSCC19947.2020.9063076.
[99]	 Q. Zhong et al., " CMOS terahertz receivers, " in Proc. 2018 IEEE Custom Integr. Circuits Conf. (CICC), pp. 1-8. doi:
10.1109/CICC.2018.8357054.
[100]	Y. Zhu, H. Wang, K. Kang, and O. Momeni, " A low power sub-harmonic selfoscillating mixer with 16.8dB conversion loss at 310GHz in 65nm CMOS, " in
Proc. 2019 IEEE Custom Integr. Circuits
Conf. (CICC), pp. 1-4. doi: 10.1109/
CICC.2019.8780119.
[101]	Y. Zhao et al., " An 0.56THz frequency
synthesizer with 21GHz locking range
and −74dBc/Hz phase noise at 1MHz offset in 65nm CMOS, " IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 3005-3019, Dec.
2016. doi: 10.1109/JSSC.2016.2601614.
[102]	Z Hu, C Wang and R Han, " Heterodyne
sensing CMOS array with high density
and large scale: A 240-GHz, 32-unit receiver using a de-centralized architecture, " in Proc. IEEE Radio Freq. Integr.
Circuits Symp. (RFIC), 2018, pp. 252-255.
doi: 10.1109/RFIC.2018.8428843.
[103]	C. Wang, B. Perkins, Z. Wang, and R. Han,
" Molecular detection for unconcentrated
gas with PPM sensitivity using 220-to320-GHz dual frequency-comb spectrometer in CMOS, " IEEE Trans. Biomed. Circuits
Syst., vol. 12, no. 3, pp. 709-721, June
2018. doi: 10.1109/TBCAS.2018.2812818.
[104]	K. Schmalz, N. Rothbart, P. F.-X. Neumaier, J. Borngrber, H. Hbers, and
D. Kissinger, " Gas spectroscopy system for breath analysis at mm-wave/
THz using SiGe BiCMOS circuits, " IEEE
Trans. THz Sci. Technol., vol. 65, no. 5,
pp. 1807-1818, May 2017. doi: 10.1109/
TMTT.2017.2650915.
[105]	J. Gr z y b, B . He i n e m a n n , a n d U. R .
Pfeiffer, " Solid-state terahertz superresolution imaging device in 130-nm
SiGe BiCMOS technology, " IEEE Trans.

IEEE SOLID-STATE CIRCUITS MAGAZINE	

Microw. Theory Techn., vol. 65, no. 11,
pp. 4357-4372, Nov. 2017. doi: 10.1109/
TMTT.2017.2684120.
[106]	K. O. Kenneth et al., " Opening terahertz
for everyday applications, " IEEE Commun. Mag., vol. 57, no. 8, pp. 70-76, Aug.
2019. doi: 10.1109/MCOM.2019.1800909.
[107]	K. Takano et al., " A 105Gb/s 300GHz
CMOS transmitter, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC), 2017,
pp. 308-309. doi: 10.1109/ISSCC.2017.
7870384.
[108]	C. Jiang, A. Cathelin, and E. Afshari, " A
high-speed efficient 220-GHz spatialorthogonal ASK transmitter in 130-nm
SiGe BiCMOS, " IEEE J. Solid-State Circuits,
vol. 52, no. 9, pp. 2321-2334, Sept. 2017.
doi: 10.1109/JSSC.2017.2702007.
[109]	P. Rodr ig uez-Vazquez, J. Grzyb, N.
Sarmah, B. Heinemann, and U. R. Pfeiffer, " A 65 Gbps QPSK one meter wireless link operating at a 225-255 GHz tunable carrier in a SiGe HBT technology, " in
Proc. 2018 IEEE Radio Wireless Symp.,
pp. 146 -149. doi: 10.1109/RWS.2018.
8304970.
[110]	W. Volkaerts, N. V. Thienen, and P. Reynaert, " An FSK plastic waveguide communication link in 40nm CMOS, " in Proc.
IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, 2015, pp. 1-3. doi:
10.1109/ISSCC.2015.7062984.
[111]	 N. V. Thienen, Y. Zhang, and P. Reynaert,
" Bidirectional communication circuits
for a 120-GHz PMF data link in 40-nm
CMOS, " IEEE J. Solid-State Circuits, vol. 53,
no. 7, pp. 2023-2031, 2018. doi: 10.1109/
JSSC.2018.2822714.
[112]	M. Sawaby, N. Dolatsha, B. Grave, C.
Chen, and A. Arbabian, " A fully packaged 130-GHz QPSK transmitter with
an integrated PRBS generator, " IEEE Solid-State Circuits Lett., vol. 1, no. 7, July
2018. doi: 10.1109/LSSC.2019.2895571.
[113]	J. Kash et al., " Optical interconnects in
exascale supercomputers, " in Proc. 2010
23rd Annu. Meeting IEEE Photon. Soc., pp.
483-484. doi: 10.1109/PHOTONICS.2010.
5698971.

About the Author
Qun Jane Gu ( jg u@ ucdav is.edu)
received her Ph.D. degree from the
University of California, Los Angeles, in 2007. After a two-year stay at
the University of Florida, she joined
the University of California, Davis, in
2012. Her research interests include
high-efficiency, low-power-interconnect, millimeter-wave (mm-wave)
and sub-mm-wave/terahertz ICs and
systems for communication, radar,
and imaging. She serves as a technical program committee member for
the IEEE RFIC Symposium, CIC, and
ISSCC. She is an associate editor of
IEEE Microwave and Wireless Components Letters and VLSI Journal of
Integration and a guest editor of IEEE
Journal of Solid-State Circuits.




IEEE Solid-States Circuits Magazine - Fall 2020

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2020

Contents
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2020 - Contents
IEEE Solid-States Circuits Magazine - Fall 2020 - 2
IEEE Solid-States Circuits Magazine - Fall 2020 - 3
IEEE Solid-States Circuits Magazine - Fall 2020 - 4
IEEE Solid-States Circuits Magazine - Fall 2020 - 5
IEEE Solid-States Circuits Magazine - Fall 2020 - 6
IEEE Solid-States Circuits Magazine - Fall 2020 - 7
IEEE Solid-States Circuits Magazine - Fall 2020 - 8
IEEE Solid-States Circuits Magazine - Fall 2020 - 9
IEEE Solid-States Circuits Magazine - Fall 2020 - 10
IEEE Solid-States Circuits Magazine - Fall 2020 - 11
IEEE Solid-States Circuits Magazine - Fall 2020 - 12
IEEE Solid-States Circuits Magazine - Fall 2020 - 13
IEEE Solid-States Circuits Magazine - Fall 2020 - 14
IEEE Solid-States Circuits Magazine - Fall 2020 - 15
IEEE Solid-States Circuits Magazine - Fall 2020 - 16
IEEE Solid-States Circuits Magazine - Fall 2020 - 17
IEEE Solid-States Circuits Magazine - Fall 2020 - 18
IEEE Solid-States Circuits Magazine - Fall 2020 - 19
IEEE Solid-States Circuits Magazine - Fall 2020 - 20
IEEE Solid-States Circuits Magazine - Fall 2020 - 21
IEEE Solid-States Circuits Magazine - Fall 2020 - 22
IEEE Solid-States Circuits Magazine - Fall 2020 - 23
IEEE Solid-States Circuits Magazine - Fall 2020 - 24
IEEE Solid-States Circuits Magazine - Fall 2020 - 25
IEEE Solid-States Circuits Magazine - Fall 2020 - 26
IEEE Solid-States Circuits Magazine - Fall 2020 - 27
IEEE Solid-States Circuits Magazine - Fall 2020 - 28
IEEE Solid-States Circuits Magazine - Fall 2020 - 29
IEEE Solid-States Circuits Magazine - Fall 2020 - 30
IEEE Solid-States Circuits Magazine - Fall 2020 - 31
IEEE Solid-States Circuits Magazine - Fall 2020 - 32
IEEE Solid-States Circuits Magazine - Fall 2020 - 33
IEEE Solid-States Circuits Magazine - Fall 2020 - 34
IEEE Solid-States Circuits Magazine - Fall 2020 - 35
IEEE Solid-States Circuits Magazine - Fall 2020 - 36
IEEE Solid-States Circuits Magazine - Fall 2020 - 37
IEEE Solid-States Circuits Magazine - Fall 2020 - 38
IEEE Solid-States Circuits Magazine - Fall 2020 - 39
IEEE Solid-States Circuits Magazine - Fall 2020 - 40
IEEE Solid-States Circuits Magazine - Fall 2020 - 41
IEEE Solid-States Circuits Magazine - Fall 2020 - 42
IEEE Solid-States Circuits Magazine - Fall 2020 - 43
IEEE Solid-States Circuits Magazine - Fall 2020 - 44
IEEE Solid-States Circuits Magazine - Fall 2020 - 45
IEEE Solid-States Circuits Magazine - Fall 2020 - 46
IEEE Solid-States Circuits Magazine - Fall 2020 - 47
IEEE Solid-States Circuits Magazine - Fall 2020 - 48
IEEE Solid-States Circuits Magazine - Fall 2020 - 49
IEEE Solid-States Circuits Magazine - Fall 2020 - 50
IEEE Solid-States Circuits Magazine - Fall 2020 - 51
IEEE Solid-States Circuits Magazine - Fall 2020 - 52
IEEE Solid-States Circuits Magazine - Fall 2020 - 53
IEEE Solid-States Circuits Magazine - Fall 2020 - 54
IEEE Solid-States Circuits Magazine - Fall 2020 - 55
IEEE Solid-States Circuits Magazine - Fall 2020 - 56
IEEE Solid-States Circuits Magazine - Fall 2020 - 57
IEEE Solid-States Circuits Magazine - Fall 2020 - 58
IEEE Solid-States Circuits Magazine - Fall 2020 - 59
IEEE Solid-States Circuits Magazine - Fall 2020 - 60
IEEE Solid-States Circuits Magazine - Fall 2020 - 61
IEEE Solid-States Circuits Magazine - Fall 2020 - 62
IEEE Solid-States Circuits Magazine - Fall 2020 - 63
IEEE Solid-States Circuits Magazine - Fall 2020 - 64
IEEE Solid-States Circuits Magazine - Fall 2020 - 65
IEEE Solid-States Circuits Magazine - Fall 2020 - 66
IEEE Solid-States Circuits Magazine - Fall 2020 - 67
IEEE Solid-States Circuits Magazine - Fall 2020 - 68
IEEE Solid-States Circuits Magazine - Fall 2020 - 69
IEEE Solid-States Circuits Magazine - Fall 2020 - 70
IEEE Solid-States Circuits Magazine - Fall 2020 - 71
IEEE Solid-States Circuits Magazine - Fall 2020 - 72
IEEE Solid-States Circuits Magazine - Fall 2020 - 73
IEEE Solid-States Circuits Magazine - Fall 2020 - 74
IEEE Solid-States Circuits Magazine - Fall 2020 - 75
IEEE Solid-States Circuits Magazine - Fall 2020 - 76
IEEE Solid-States Circuits Magazine - Fall 2020 - 77
IEEE Solid-States Circuits Magazine - Fall 2020 - 78
IEEE Solid-States Circuits Magazine - Fall 2020 - 79
IEEE Solid-States Circuits Magazine - Fall 2020 - 80
IEEE Solid-States Circuits Magazine - Fall 2020 - 81
IEEE Solid-States Circuits Magazine - Fall 2020 - 82
IEEE Solid-States Circuits Magazine - Fall 2020 - 83
IEEE Solid-States Circuits Magazine - Fall 2020 - 84
IEEE Solid-States Circuits Magazine - Fall 2020 - 85
IEEE Solid-States Circuits Magazine - Fall 2020 - 86
IEEE Solid-States Circuits Magazine - Fall 2020 - 87
IEEE Solid-States Circuits Magazine - Fall 2020 - 88
IEEE Solid-States Circuits Magazine - Fall 2020 - 89
IEEE Solid-States Circuits Magazine - Fall 2020 - 90
IEEE Solid-States Circuits Magazine - Fall 2020 - 91
IEEE Solid-States Circuits Magazine - Fall 2020 - 92
IEEE Solid-States Circuits Magazine - Fall 2020 - 93
IEEE Solid-States Circuits Magazine - Fall 2020 - 94
IEEE Solid-States Circuits Magazine - Fall 2020 - 95
IEEE Solid-States Circuits Magazine - Fall 2020 - 96
IEEE Solid-States Circuits Magazine - Fall 2020 - 97
IEEE Solid-States Circuits Magazine - Fall 2020 - 98
IEEE Solid-States Circuits Magazine - Fall 2020 - 99
IEEE Solid-States Circuits Magazine - Fall 2020 - 100
IEEE Solid-States Circuits Magazine - Fall 2020 - 101
IEEE Solid-States Circuits Magazine - Fall 2020 - 102
IEEE Solid-States Circuits Magazine - Fall 2020 - 103
IEEE Solid-States Circuits Magazine - Fall 2020 - 104
IEEE Solid-States Circuits Magazine - Fall 2020 - 105
IEEE Solid-States Circuits Magazine - Fall 2020 - 106
IEEE Solid-States Circuits Magazine - Fall 2020 - 107
IEEE Solid-States Circuits Magazine - Fall 2020 - 108
IEEE Solid-States Circuits Magazine - Fall 2020 - 109
IEEE Solid-States Circuits Magazine - Fall 2020 - 110
IEEE Solid-States Circuits Magazine - Fall 2020 - 111
IEEE Solid-States Circuits Magazine - Fall 2020 - 112
IEEE Solid-States Circuits Magazine - Fall 2020 - 113
IEEE Solid-States Circuits Magazine - Fall 2020 - 114
IEEE Solid-States Circuits Magazine - Fall 2020 - 115
IEEE Solid-States Circuits Magazine - Fall 2020 - 116
IEEE Solid-States Circuits Magazine - Fall 2020 - 117
IEEE Solid-States Circuits Magazine - Fall 2020 - 118
IEEE Solid-States Circuits Magazine - Fall 2020 - 119
IEEE Solid-States Circuits Magazine - Fall 2020 - 120
IEEE Solid-States Circuits Magazine - Fall 2020 - 121
IEEE Solid-States Circuits Magazine - Fall 2020 - 122
IEEE Solid-States Circuits Magazine - Fall 2020 - 123
IEEE Solid-States Circuits Magazine - Fall 2020 - 124
IEEE Solid-States Circuits Magazine - Fall 2020 - 125
IEEE Solid-States Circuits Magazine - Fall 2020 - 126
IEEE Solid-States Circuits Magazine - Fall 2020 - 127
IEEE Solid-States Circuits Magazine - Fall 2020 - 128
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com