IEEE Solid-States Circuits Magazine - Fall 2020 - 46

challenges, such as individual and
regular calibrations. Every human
body is unique; therefore, each
wearable may require individual
adjustments. In addition to this, the
drift in the sensing material through
time requires regular correction.
Long-term signal acquisition is also
susceptible to signal instability and
drift. Such problems may have a significant impact on the accuracy of a
device. Having on-sensor deep learning algorithms can enable a trained
data set that will work as a feedback
system for the robust operation
and accuracy of devices, which will
reduce false negatives and positives.
Integrated deep learning algorithms
on devices may correct human-tohuman variations and drifts in readings due to the device components
and environment, and they may
detect important features in respiratory signals to assist physicians
with providing the highest quality analysis.

Conclusions
Next-generation blood gas monitors
are essential for the future of medical care. These new tools will be vital
for treating any diseases and conditions that O2 affects or in which O2 is
affected, including new respiratory
diseases, such as COVID-19, and longstanding health-care problems, such
as sleep apnea and COPD. Medical
devices and treatment plans that can
be personalized will improve quality of care for a significant number
of patients. This kind of care is not
possible without remote and continuous monitoring of blood gas content,
especially for respiratory diseases.
In this article, we covered emerging blood gas monitoring devices
and techniques to create the sensors
and IC structures to transform bulky
benchtop instruments to miniaturized, next-generation biomedical
devices. We also discussed some of
the challenges that engineers face
in developing medical wearables/
implantables and solutions to enable
these revolutionary devices to become
the new standard in medical care.

46	

FA L L 2 0 2 0	

References

[1]	 L. Gattinoni et al., " COVID-19 pneumonia:
Different respiratory treatments for different phenotypes? " Intensive Care Med., vol.
46, no. 6, pp. 1099-1102, 2020. doi: 10.1007/
s00134-020-06033-2.
[2]	 R. Levitan. " The infection that's silently
killing coronavirus patients. " NY Times.
https://www.nytimes.com/2020/04/20/
opinion/sunday/coronav ir us-testing
-pneumonia.html (accessed May 2020).
[3]	 G. B. Smith, D. R. Prytherch, P. E. Schmidt,
P. I. Featherstone, and P. Meredith, " A reply to: Young C, Beasley R. " The association between SpO2 values and mortality-
interpret with caution, " Resuscitation,
vol. 84, no. 2, p. e43, 2013. doi: 10.1016/
j.resuscitation.2012.11.009.
[4]	 K. Aung, " 2018-guideline: Panel recommends maintaining SpO2 at no higher than
96% in most acutely ill hospitalized patients, " ACP J. Club, vol. 170, no. 6, p. JC26,
2019. doi: 10.7326/ACPJ201903190-026.
[5]	 M. Folke, L. Cernerud, M. Ekström, and B.
Hök, " Critical review of non-invasive respiratory monitoring in medical care, " Med.
Biol. Eng. Comput., vol. 41, no. 4, pp. 377-
383, 2003. doi: 10.1007/BF02348078.
[6]	 M. Hernandez-Silveira, K. Wieczorkowsk i-Rettinger, S. A ng, and A . Burdett,
" Preliminary assessment of the sensiumvitals®: A low-cost wireless solution
for patient surveillance in the general
wards, " in Proc. 2015 37th Annu. Int. Conf.
IEEE Engineering Medicine Biology Society (EMBC), pp. 4931-4937. doi: 10.1109/
EMBC.2015.7319498.
[7]	 S. R. Braun, Respiratory Rate and Pattern,
3rd ed. New York: Butterworths, 1990,
pp. 226-230.
[8]	 J. W. Severinghaus, P. Astrup, and J. Murray,
" Blood gas analysis and critical care medicine, " Amer. J. Respiratory Crit. Care Med.,
vol. 157, no. 4, pp. S114-S122, Apr. 1998. doi:
10.1164/ajrccm.157.4.nhlb1-9.
[9]	 " Respiratory failure, " National Heart, Lung,
and Blood Institute, Bethesda, MD. Accessed: Apr. 2020. [Online]. Available: https://
www.nhlbi.nih.gov/health-topics/respiratory
-failure
[10]	F. Al-Khalidi, R. Saatchi, D. Burke, H. Elphick, and S. Tan, " Respiration rate monitoring methods: A review, " Pediatric Pulmonol., vol. 46, no. 6, pp. 523-529, 2011.
doi: 10.1002/ppul.21416.
[11]	M. Hernandez-Silveira et al., " Assessment
of the feasibility of an ultra-low power,
wireless digital patch for the continuous
ambulatory monitoring of vital signs, "
BMJ Open, vol. 5, no. 5, p. e006606, 2015.
doi: 10.1136/ bmjopen-2014-006606.
[12]	D. Sen, I. Costanzo, and U. Guler, " Contemporary and nascent techniques for monitoring of oxygenation as a vital sign, " in Proc.
IEEE Int. Midwest Symp. Circuits Systems,
(MWSCAS), Aug. 2020, pp. 647-650. doi:
10.1109/MWSCAS48704.2020.9184660.
[13]	F. Curley, F. Gerard, M. Kevin, G. Leo, M.
Laffey, and G. John, " Mechanical ventilation: Taking its toll on the lung, " Anesthesiology, J. Amer. Soc. Anesthesiologists,
vol. 111, no. 4, pp. 701-703, Oct. 2009. doi:
10.1097/01.anes.0000358753.29528.fb.
[14]	Electrochemical device for chemical analysis, by L. Clark. (Nov. 1956) U.S. 2 913
386 A [Online]. Available: https://patents
.google.com/patent/US2913386A/en?q=c
lark+oxygen+electrode&inventor=Clark&
before=priority:19600101&after=priority:
19500101&sort=old
[15]	J. Severinghaus and A. Bradley, " Electrodes for blood pO2 and pCO2 determination, " J. Appl. Physiol., vol. 13, no. 3, pp.

IEEE SOLID-STATE CIRCUITS MAGAZINE	

515-520, 1958. doi: 10.1152/jappl.1958.
13.3.515.
[16]	J. Severinghaus and Y. Honda, " History of
blood gas analysis. VII. Pulse oximetry, " J.
Clin. Monit., vol. 3, pp. 135-138, Apr. 1987.
doi: 10.1007/BF00858362.
[17]	P. Eberhard, " The design, use, and results
of transcutaneous carbon dioxide analysis: Current and future directions, " Anesthesia Analgesia, vol. 105, no. 6, pp.
S48-S52, Dec. 2007. doi: 10.1213/01.ane.
0000278642.16117.f8.
[18]	 " Fitbit fitness tracker. " Accessed on: Feb.
15, 2019. [Online]. Available: https://www
.fitbit.com/home
[19]	C. J. Lim, S. Lee, J. H. Kim, H. J. Kil, Y. C.
Kim, and J. W. Park, " Wearable, luminescent oxygen sensor for transcutaneous
oxygen monitoring, " ACS Appl. Mater.
Interfaces, vol. 10, no. 48, pp. 41,026 -
41,034, July 2018. doi: 10.1021/acsami.
8b13276.
[20]	H. U. Chung et al., " Binodal, wireless epidermal electronic systems with in-sensor
analytics for neonatal intensive care, "
Science, vol. 363, no. 6430, p. eaau0780,
2019. doi: 10.1126/science.aau0780.
[21]	S. Sonmezoglu and M. M. Maharbiz, " 34.4
a 4.5mm3 deep-tissue ultrasonic implantable luminescence oxygen sensor, " in
Proc. 2020 IEEE Int. Solid-State Circuits
Conf. (ISSCC), pp. 454-456. doi: 10.1109/
ISSCC19947.2020.9062946.
[22]	I. Costanzo, D. Sen, and U. Guler, " An integrated readout circuit for a transcutaneous oxygen sensing wearable device, " in
Proc. IEEE Custom Integrated Circuits Conf.
(CICC), Mar. 2020, pp. 1-4. doi: 10.1109/
CICC48029.2020.9075881.
[23]	 " Apple watch, " Apple, Cuper tino, C A ,
2020. [Online]. Available: https://www
.apple.com/apple-watch-series-5/health/
[24]	SensiumVitals[textregistered]. Accessed
on: Jan. 31, 2019. [Online]. Available: https://
www.sensium.co.uk/
[25]	 " MightySat Rx, " Masimo, Irvine, CA, July
2020. Accessed: July 17, 2020. [Online]. Available: https://www.masimo.com/products/
monitors/spot-check/mightysatrx
[26]	S. Song et al., " A 769 µw battery-powered
single-chip SoC with BLE for multi-modal
vital sign monitoring health patches, "
IEEE Trans. Biomed. Circuits Syst., vol. 13,
no. 6, pp. 1506-1517, 2019. doi: 10.1109/
TBCAS.2019.2945114.
[27]	J. W. Severinghaus, " Career perspective:
John W. Severinghaus, " Extreme Physiol.
Med., vol. 2, Oct. 2013, Art no. 29. doi:
10.1186/2046-7648-2-29.
[28]	C. M. Lochner, Y. Khan, A. Pierre, and A. C.
Arias, " All-organic optoelectronic sensor
for pulse oximetry, " Nature Commun., vol.
5, Dec. 2014, Art no. 5745. doi: 10.1038/
ncomms6745.
[29]	P. E. Bickler, J. R. Feiner, and J. W. Severinghaus, " Effects of skin pigmentation on
pulse oximeter accuracy at low saturation, "
Anesthesiology, vol. 102, no. 4, pp. 715-
719, Apr. 2005. doi: 10.1097/00000542200504000-00004. [Online]. Available:
https://anesthesiology.pubs.asahq.org/
article.aspx?articleid=1942319
[30]	 " The effects of dark skin pigmentation
and low saturation in oximetry, " Nonin,
Plymouth, MN, Aug. 2020. Accessed: Aug.
4, 2020. [Online]. Available: https://www
.nonin.com/resource/effects- of-sk in
-pigmentation-in-oximetry
[31]	E. D. Chan, M. M. Chan, and M. M. Chan,
" Pulse oximetry: Understanding its basic principles facilitates appreciation of
its limitations, " Respiratory Med., vol.
107, no. 6, pp. 789-799, June 2013. doi:
10.1016/j.rmed.2013.02.004.


https://www.nytimes.com/2020/04/20/opinion/sunday/coronavirus-testing-pneumonia.html https://www.nytimes.com/2020/04/20/opinion/sunday/coronavirus-testing-pneumonia.html https://www.nytimes.com/2020/04/20/opinion/sunday/coronavirus-testing-pneumonia.html https://www.fitbit.com/home https://www.fitbit.com/home https://www.apple.com/apple-watch-series-5/health/ https://www.apple.com/apple-watch-series-5/health/ https://www.sensium.co.uk/ https://www.sensium.co.uk/ https://www.masimo.com/products/monitors/spot-check/mightysatrx https://www.nhlbi.nih.gov/health-topics/respiratory-failure https://www.masimo.com/products/monitors/spot-check/mightysatrx https://www.nhlbi.nih.gov/health-topics/respiratory-failure https://www.nhlbi.nih.gov/health-topics/respiratory-failure https://anesthesiology.pubs.asahq.org/article.aspx?articleid=1942319 https://anesthesiology.pubs.asahq.org/article.aspx?articleid=1942319 https://www.nonin.com/resource/effects-of-skin-pigmentation-in-oximetry https://patents.google.com/patent/US2913386A/en?q=clark+oxygen+electrode&inventor=Clark&before=priority:19600101&after=priority:19500101&sort=old https://www.nonin.com/resource/effects-of-skin-pigmentation-in-oximetry https://patents.google.com/patent/US2913386A/en?q=clark+oxygen+electrode&inventor=Clark&before=priority:19600101&after=priority:19500101&sort=old https://www.nonin.com/resource/effects-of-skin-pigmentation-in-oximetry https://patents.google.com/patent/US2913386A/en?q=clark+oxygen+electrode&inventor=Clark&before=priority:19600101&after=priority:19500101&sort=old https://patents.google.com/patent/US2913386A/en?q=clark+oxygen+electrode&inventor=Clark&before=priority:19600101&after=priority:19500101&sort=old https://patents.google.com/patent/US2913386A/en?q=clark+oxygen+electrode&inventor=Clark&before=priority:19600101&after=priority:19500101&sort=old

IEEE Solid-States Circuits Magazine - Fall 2020

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2020

Contents
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2020 - Contents
IEEE Solid-States Circuits Magazine - Fall 2020 - 2
IEEE Solid-States Circuits Magazine - Fall 2020 - 3
IEEE Solid-States Circuits Magazine - Fall 2020 - 4
IEEE Solid-States Circuits Magazine - Fall 2020 - 5
IEEE Solid-States Circuits Magazine - Fall 2020 - 6
IEEE Solid-States Circuits Magazine - Fall 2020 - 7
IEEE Solid-States Circuits Magazine - Fall 2020 - 8
IEEE Solid-States Circuits Magazine - Fall 2020 - 9
IEEE Solid-States Circuits Magazine - Fall 2020 - 10
IEEE Solid-States Circuits Magazine - Fall 2020 - 11
IEEE Solid-States Circuits Magazine - Fall 2020 - 12
IEEE Solid-States Circuits Magazine - Fall 2020 - 13
IEEE Solid-States Circuits Magazine - Fall 2020 - 14
IEEE Solid-States Circuits Magazine - Fall 2020 - 15
IEEE Solid-States Circuits Magazine - Fall 2020 - 16
IEEE Solid-States Circuits Magazine - Fall 2020 - 17
IEEE Solid-States Circuits Magazine - Fall 2020 - 18
IEEE Solid-States Circuits Magazine - Fall 2020 - 19
IEEE Solid-States Circuits Magazine - Fall 2020 - 20
IEEE Solid-States Circuits Magazine - Fall 2020 - 21
IEEE Solid-States Circuits Magazine - Fall 2020 - 22
IEEE Solid-States Circuits Magazine - Fall 2020 - 23
IEEE Solid-States Circuits Magazine - Fall 2020 - 24
IEEE Solid-States Circuits Magazine - Fall 2020 - 25
IEEE Solid-States Circuits Magazine - Fall 2020 - 26
IEEE Solid-States Circuits Magazine - Fall 2020 - 27
IEEE Solid-States Circuits Magazine - Fall 2020 - 28
IEEE Solid-States Circuits Magazine - Fall 2020 - 29
IEEE Solid-States Circuits Magazine - Fall 2020 - 30
IEEE Solid-States Circuits Magazine - Fall 2020 - 31
IEEE Solid-States Circuits Magazine - Fall 2020 - 32
IEEE Solid-States Circuits Magazine - Fall 2020 - 33
IEEE Solid-States Circuits Magazine - Fall 2020 - 34
IEEE Solid-States Circuits Magazine - Fall 2020 - 35
IEEE Solid-States Circuits Magazine - Fall 2020 - 36
IEEE Solid-States Circuits Magazine - Fall 2020 - 37
IEEE Solid-States Circuits Magazine - Fall 2020 - 38
IEEE Solid-States Circuits Magazine - Fall 2020 - 39
IEEE Solid-States Circuits Magazine - Fall 2020 - 40
IEEE Solid-States Circuits Magazine - Fall 2020 - 41
IEEE Solid-States Circuits Magazine - Fall 2020 - 42
IEEE Solid-States Circuits Magazine - Fall 2020 - 43
IEEE Solid-States Circuits Magazine - Fall 2020 - 44
IEEE Solid-States Circuits Magazine - Fall 2020 - 45
IEEE Solid-States Circuits Magazine - Fall 2020 - 46
IEEE Solid-States Circuits Magazine - Fall 2020 - 47
IEEE Solid-States Circuits Magazine - Fall 2020 - 48
IEEE Solid-States Circuits Magazine - Fall 2020 - 49
IEEE Solid-States Circuits Magazine - Fall 2020 - 50
IEEE Solid-States Circuits Magazine - Fall 2020 - 51
IEEE Solid-States Circuits Magazine - Fall 2020 - 52
IEEE Solid-States Circuits Magazine - Fall 2020 - 53
IEEE Solid-States Circuits Magazine - Fall 2020 - 54
IEEE Solid-States Circuits Magazine - Fall 2020 - 55
IEEE Solid-States Circuits Magazine - Fall 2020 - 56
IEEE Solid-States Circuits Magazine - Fall 2020 - 57
IEEE Solid-States Circuits Magazine - Fall 2020 - 58
IEEE Solid-States Circuits Magazine - Fall 2020 - 59
IEEE Solid-States Circuits Magazine - Fall 2020 - 60
IEEE Solid-States Circuits Magazine - Fall 2020 - 61
IEEE Solid-States Circuits Magazine - Fall 2020 - 62
IEEE Solid-States Circuits Magazine - Fall 2020 - 63
IEEE Solid-States Circuits Magazine - Fall 2020 - 64
IEEE Solid-States Circuits Magazine - Fall 2020 - 65
IEEE Solid-States Circuits Magazine - Fall 2020 - 66
IEEE Solid-States Circuits Magazine - Fall 2020 - 67
IEEE Solid-States Circuits Magazine - Fall 2020 - 68
IEEE Solid-States Circuits Magazine - Fall 2020 - 69
IEEE Solid-States Circuits Magazine - Fall 2020 - 70
IEEE Solid-States Circuits Magazine - Fall 2020 - 71
IEEE Solid-States Circuits Magazine - Fall 2020 - 72
IEEE Solid-States Circuits Magazine - Fall 2020 - 73
IEEE Solid-States Circuits Magazine - Fall 2020 - 74
IEEE Solid-States Circuits Magazine - Fall 2020 - 75
IEEE Solid-States Circuits Magazine - Fall 2020 - 76
IEEE Solid-States Circuits Magazine - Fall 2020 - 77
IEEE Solid-States Circuits Magazine - Fall 2020 - 78
IEEE Solid-States Circuits Magazine - Fall 2020 - 79
IEEE Solid-States Circuits Magazine - Fall 2020 - 80
IEEE Solid-States Circuits Magazine - Fall 2020 - 81
IEEE Solid-States Circuits Magazine - Fall 2020 - 82
IEEE Solid-States Circuits Magazine - Fall 2020 - 83
IEEE Solid-States Circuits Magazine - Fall 2020 - 84
IEEE Solid-States Circuits Magazine - Fall 2020 - 85
IEEE Solid-States Circuits Magazine - Fall 2020 - 86
IEEE Solid-States Circuits Magazine - Fall 2020 - 87
IEEE Solid-States Circuits Magazine - Fall 2020 - 88
IEEE Solid-States Circuits Magazine - Fall 2020 - 89
IEEE Solid-States Circuits Magazine - Fall 2020 - 90
IEEE Solid-States Circuits Magazine - Fall 2020 - 91
IEEE Solid-States Circuits Magazine - Fall 2020 - 92
IEEE Solid-States Circuits Magazine - Fall 2020 - 93
IEEE Solid-States Circuits Magazine - Fall 2020 - 94
IEEE Solid-States Circuits Magazine - Fall 2020 - 95
IEEE Solid-States Circuits Magazine - Fall 2020 - 96
IEEE Solid-States Circuits Magazine - Fall 2020 - 97
IEEE Solid-States Circuits Magazine - Fall 2020 - 98
IEEE Solid-States Circuits Magazine - Fall 2020 - 99
IEEE Solid-States Circuits Magazine - Fall 2020 - 100
IEEE Solid-States Circuits Magazine - Fall 2020 - 101
IEEE Solid-States Circuits Magazine - Fall 2020 - 102
IEEE Solid-States Circuits Magazine - Fall 2020 - 103
IEEE Solid-States Circuits Magazine - Fall 2020 - 104
IEEE Solid-States Circuits Magazine - Fall 2020 - 105
IEEE Solid-States Circuits Magazine - Fall 2020 - 106
IEEE Solid-States Circuits Magazine - Fall 2020 - 107
IEEE Solid-States Circuits Magazine - Fall 2020 - 108
IEEE Solid-States Circuits Magazine - Fall 2020 - 109
IEEE Solid-States Circuits Magazine - Fall 2020 - 110
IEEE Solid-States Circuits Magazine - Fall 2020 - 111
IEEE Solid-States Circuits Magazine - Fall 2020 - 112
IEEE Solid-States Circuits Magazine - Fall 2020 - 113
IEEE Solid-States Circuits Magazine - Fall 2020 - 114
IEEE Solid-States Circuits Magazine - Fall 2020 - 115
IEEE Solid-States Circuits Magazine - Fall 2020 - 116
IEEE Solid-States Circuits Magazine - Fall 2020 - 117
IEEE Solid-States Circuits Magazine - Fall 2020 - 118
IEEE Solid-States Circuits Magazine - Fall 2020 - 119
IEEE Solid-States Circuits Magazine - Fall 2020 - 120
IEEE Solid-States Circuits Magazine - Fall 2020 - 121
IEEE Solid-States Circuits Magazine - Fall 2020 - 122
IEEE Solid-States Circuits Magazine - Fall 2020 - 123
IEEE Solid-States Circuits Magazine - Fall 2020 - 124
IEEE Solid-States Circuits Magazine - Fall 2020 - 125
IEEE Solid-States Circuits Magazine - Fall 2020 - 126
IEEE Solid-States Circuits Magazine - Fall 2020 - 127
IEEE Solid-States Circuits Magazine - Fall 2020 - 128
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com