IEEE Solid-States Circuits Magazine - Fall 2021 - 102

As is explained in the following
sections, SSH techniques can be categorized
into two major groups: the opencircuit
and short-circuit types. The
former, such as SECE and series SSHI,
operates in a way such that the transducer
sees an open-circuit load most
of the time. With CP
electrodes, the current IS
of the voltage source VS
of L ,1 C ,1 and CP
between the two
that flows out
can, therefore,
be maximized if the system operates
at OC~
when the series combination
reaches zero impedance.
On the other hand, the shortcircuit
type of synchronized switching
interface circuits, such as parallel SSHI
and SSH on a capacitor (SSHC), operate
by regulating the voltage amplitude
across
C ,P
and
tential energy into Joule heat, the operation
converts the potential energy
completely into magnetic energy in L2
by turning on the switches for a wellcontrolled
duration. Once the switches
S1
L2
and S2
converting the
durinductor's
magnetic energy into C .BUF
From the waveforms in Figure 4(b),
VCP is charged from 0 V to V2 OC
ing the positive current cycle. In
other words, a potential energy of
.( )CV
05 2P
$
which is achieved by shorting
the electrodes through the rectifier.
Due to the voltage regulation, the
transducer ideally does not see ,CP
the extracted power peaks at the shortcircuit
resonant frequency SC~ when
L1
resonates with C .1
Open-Circuit Interface Circuits
Synchronous Electric
Charge Extraction
A popular open-circuit type of interface
operation called SECE was first proposed
in [10], as shown in Figure 4(a) and (b).
In the basic SECE architecture, the transducer
sees the series combination of an
FBR, two switches S1
ductor L .2
and S ,2 and an inNotice
that, as opposed to the
basic FBR architecture, no capacitor is
placed at the rectifier's output (in theory,
a rectifier provides alternating current
paths for rectifying its input voltage; depending
on the load condition, VRECT
is
not necessarily constant), and a buffer
capacitor CBUF
in parallel with the effective
loading from the application circuits
RLOAD
switch S3
is connected to L2
and a diode D .5
with another
During the operation, the switches
are off most of the time, and IS
and discharges CP
and S2
across CP
charges
in an open-circuit
manner. The same as the SSD-S operation,
SECE turns on S1
tralize VCP
of I ,S
to neuat
zero-crossings
waveforms of VCP
resulting in the same interface
and I .S
However,
instead of dissipating the electrical po102
FALL
2021
$$ which is four times higher
than the maximum output power from
an FBR or HBR. Active switching with
precise timing control consumes circuit
power and degrades the extracted
power. Fortunately, this power cost is
usually much smaller than the additional
power that can be harvested by
applying the switching operation. As
demonstrated in [11], the control circuit
consumes 300 µW, and the extra
harvested power is 3.85 mW.
In the specific implementation
P OC
2
shown in Figure 4(a), the diode D5
prevents negative current and ensures
complete energy transfer from L2
It can be replaced with a switch
to
C .BUF
in sync with S3
to reduce the loss due
to voltage drop V .D However, accurate
timing control is therefore needed to
ensure complete energy transfer.
Furthermore, in systems where
VOC is larger than the buffer voltenergy
transfer from CP
age V ,dc
to
L2 can be achieved by turning on S1
and S ,3
and S3
leading to a buck converterlike
implementation that takes away
the switches of S2
altogether
[12]. This improves the conversion
efficiency by reducing the series loss
during energy transfer.
In a similar attempt to reduce the
loss in energy transfer, [13] proposed
an implementation of SECE as shown
in Figure 4(c), in which the rectifier is
completely removed. During the
switching activity, the switches S1
S2
and
energy in CP
are first turned on to transfer the
In the subsequent
to L .2
operation, one of the two switches is
IEEE SOLID-STATE CIRCUITS MAGAZINE
OC
2 on CP
can be harvested
during each switching activity, corresponding
to an extracted power of
4 CV ,f
turned off depending on the signal
polarity, and either D1
or D2
provides
the current path to convert the inductor
energy into
C .BUF This implemenare
turned off, disconnecting
from the transducer, a subsequent
operation turns on ,S3
tation eliminates the loss in rectifier
and reaches a mechanical-to-electrical
conversion efficiency of 78% [13] at
the cost of two limitations: 1) VOC
to be less than Vdc
has
so that D2
S .1
remains
off during positive current cycles.
This can be addressed by applying
dynamic body biasing on
2) Some
of the node voltages become negative
during the operation.
Shareef et al. [14] proposed another
rectifierless SECE implementation, as
shown in Figure 4(d), in which two
capacitors C1
and C2
are used for
positive and negative cycles, respectively,
achieving 73% of conversion efficiency.
However, this operation also
results in negative voltages, which require
negative supplies.
Another way to reduce the conduction
loss in switches is to decrease the
current during the energy transfer.
This can be achieved by increasing the
inductance of
L ,2
which is undesirable
due to the large form factor. Gasnier
et al. [15] proposed a multishot SECE
operation, where the potential energy
in CP
is converted into L2
in multiple
steps. This reduces the peak inductor
current and the associated conduction
loss. This design claimed to extract
25% more power compared to traditional
SECE [15].
The key advantage of SECE is that it
decouples the interface operation from
the load voltage of
V .dc
This is due to
the fact that the operation always discharges
CP
completely, leading to an ex2
P
OC
tracted
power of 4 CV .f$$ It can be
shown that the extracted power reaches
PAVL
whenVV$16 S
OC = r
only when RC /16= ^h orSPr~
(/ ). As a result,
SECE rarely harvests the transducer's
available power [17].
Predamping
As explained previously, the extracted
power of SECE increases with V2
and reaches PAVL
r
OC
when VOC
is exactly
(/ ).V16 S However, in typical piezois
usually
[17].
r
electric transducers, VOC
much smaller than (/ )V16 S

IEEE Solid-States Circuits Magazine - Fall 2021

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2021

Contents
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2021 - Contents
IEEE Solid-States Circuits Magazine - Fall 2021 - 2
IEEE Solid-States Circuits Magazine - Fall 2021 - 3
IEEE Solid-States Circuits Magazine - Fall 2021 - 4
IEEE Solid-States Circuits Magazine - Fall 2021 - 5
IEEE Solid-States Circuits Magazine - Fall 2021 - 6
IEEE Solid-States Circuits Magazine - Fall 2021 - 7
IEEE Solid-States Circuits Magazine - Fall 2021 - 8
IEEE Solid-States Circuits Magazine - Fall 2021 - 9
IEEE Solid-States Circuits Magazine - Fall 2021 - 10
IEEE Solid-States Circuits Magazine - Fall 2021 - 11
IEEE Solid-States Circuits Magazine - Fall 2021 - 12
IEEE Solid-States Circuits Magazine - Fall 2021 - 13
IEEE Solid-States Circuits Magazine - Fall 2021 - 14
IEEE Solid-States Circuits Magazine - Fall 2021 - 15
IEEE Solid-States Circuits Magazine - Fall 2021 - 16
IEEE Solid-States Circuits Magazine - Fall 2021 - 17
IEEE Solid-States Circuits Magazine - Fall 2021 - 18
IEEE Solid-States Circuits Magazine - Fall 2021 - 19
IEEE Solid-States Circuits Magazine - Fall 2021 - 20
IEEE Solid-States Circuits Magazine - Fall 2021 - 21
IEEE Solid-States Circuits Magazine - Fall 2021 - 22
IEEE Solid-States Circuits Magazine - Fall 2021 - 23
IEEE Solid-States Circuits Magazine - Fall 2021 - 24
IEEE Solid-States Circuits Magazine - Fall 2021 - 25
IEEE Solid-States Circuits Magazine - Fall 2021 - 26
IEEE Solid-States Circuits Magazine - Fall 2021 - 27
IEEE Solid-States Circuits Magazine - Fall 2021 - 28
IEEE Solid-States Circuits Magazine - Fall 2021 - 29
IEEE Solid-States Circuits Magazine - Fall 2021 - 30
IEEE Solid-States Circuits Magazine - Fall 2021 - 31
IEEE Solid-States Circuits Magazine - Fall 2021 - 32
IEEE Solid-States Circuits Magazine - Fall 2021 - 33
IEEE Solid-States Circuits Magazine - Fall 2021 - 34
IEEE Solid-States Circuits Magazine - Fall 2021 - 35
IEEE Solid-States Circuits Magazine - Fall 2021 - 36
IEEE Solid-States Circuits Magazine - Fall 2021 - 37
IEEE Solid-States Circuits Magazine - Fall 2021 - 38
IEEE Solid-States Circuits Magazine - Fall 2021 - 39
IEEE Solid-States Circuits Magazine - Fall 2021 - 40
IEEE Solid-States Circuits Magazine - Fall 2021 - 41
IEEE Solid-States Circuits Magazine - Fall 2021 - 42
IEEE Solid-States Circuits Magazine - Fall 2021 - 43
IEEE Solid-States Circuits Magazine - Fall 2021 - 44
IEEE Solid-States Circuits Magazine - Fall 2021 - 45
IEEE Solid-States Circuits Magazine - Fall 2021 - 46
IEEE Solid-States Circuits Magazine - Fall 2021 - 47
IEEE Solid-States Circuits Magazine - Fall 2021 - 48
IEEE Solid-States Circuits Magazine - Fall 2021 - 49
IEEE Solid-States Circuits Magazine - Fall 2021 - 50
IEEE Solid-States Circuits Magazine - Fall 2021 - 51
IEEE Solid-States Circuits Magazine - Fall 2021 - 52
IEEE Solid-States Circuits Magazine - Fall 2021 - 53
IEEE Solid-States Circuits Magazine - Fall 2021 - 54
IEEE Solid-States Circuits Magazine - Fall 2021 - 55
IEEE Solid-States Circuits Magazine - Fall 2021 - 56
IEEE Solid-States Circuits Magazine - Fall 2021 - 57
IEEE Solid-States Circuits Magazine - Fall 2021 - 58
IEEE Solid-States Circuits Magazine - Fall 2021 - 59
IEEE Solid-States Circuits Magazine - Fall 2021 - 60
IEEE Solid-States Circuits Magazine - Fall 2021 - 61
IEEE Solid-States Circuits Magazine - Fall 2021 - 62
IEEE Solid-States Circuits Magazine - Fall 2021 - 63
IEEE Solid-States Circuits Magazine - Fall 2021 - 64
IEEE Solid-States Circuits Magazine - Fall 2021 - 65
IEEE Solid-States Circuits Magazine - Fall 2021 - 66
IEEE Solid-States Circuits Magazine - Fall 2021 - 67
IEEE Solid-States Circuits Magazine - Fall 2021 - 68
IEEE Solid-States Circuits Magazine - Fall 2021 - 69
IEEE Solid-States Circuits Magazine - Fall 2021 - 70
IEEE Solid-States Circuits Magazine - Fall 2021 - 71
IEEE Solid-States Circuits Magazine - Fall 2021 - 72
IEEE Solid-States Circuits Magazine - Fall 2021 - 73
IEEE Solid-States Circuits Magazine - Fall 2021 - 74
IEEE Solid-States Circuits Magazine - Fall 2021 - 75
IEEE Solid-States Circuits Magazine - Fall 2021 - 76
IEEE Solid-States Circuits Magazine - Fall 2021 - 77
IEEE Solid-States Circuits Magazine - Fall 2021 - 78
IEEE Solid-States Circuits Magazine - Fall 2021 - 79
IEEE Solid-States Circuits Magazine - Fall 2021 - 80
IEEE Solid-States Circuits Magazine - Fall 2021 - 81
IEEE Solid-States Circuits Magazine - Fall 2021 - 82
IEEE Solid-States Circuits Magazine - Fall 2021 - 83
IEEE Solid-States Circuits Magazine - Fall 2021 - 84
IEEE Solid-States Circuits Magazine - Fall 2021 - 85
IEEE Solid-States Circuits Magazine - Fall 2021 - 86
IEEE Solid-States Circuits Magazine - Fall 2021 - 87
IEEE Solid-States Circuits Magazine - Fall 2021 - 88
IEEE Solid-States Circuits Magazine - Fall 2021 - 89
IEEE Solid-States Circuits Magazine - Fall 2021 - 90
IEEE Solid-States Circuits Magazine - Fall 2021 - 91
IEEE Solid-States Circuits Magazine - Fall 2021 - 92
IEEE Solid-States Circuits Magazine - Fall 2021 - 93
IEEE Solid-States Circuits Magazine - Fall 2021 - 94
IEEE Solid-States Circuits Magazine - Fall 2021 - 95
IEEE Solid-States Circuits Magazine - Fall 2021 - 96
IEEE Solid-States Circuits Magazine - Fall 2021 - 97
IEEE Solid-States Circuits Magazine - Fall 2021 - 98
IEEE Solid-States Circuits Magazine - Fall 2021 - 99
IEEE Solid-States Circuits Magazine - Fall 2021 - 100
IEEE Solid-States Circuits Magazine - Fall 2021 - 101
IEEE Solid-States Circuits Magazine - Fall 2021 - 102
IEEE Solid-States Circuits Magazine - Fall 2021 - 103
IEEE Solid-States Circuits Magazine - Fall 2021 - 104
IEEE Solid-States Circuits Magazine - Fall 2021 - 105
IEEE Solid-States Circuits Magazine - Fall 2021 - 106
IEEE Solid-States Circuits Magazine - Fall 2021 - 107
IEEE Solid-States Circuits Magazine - Fall 2021 - 108
IEEE Solid-States Circuits Magazine - Fall 2021 - 109
IEEE Solid-States Circuits Magazine - Fall 2021 - 110
IEEE Solid-States Circuits Magazine - Fall 2021 - 111
IEEE Solid-States Circuits Magazine - Fall 2021 - 112
IEEE Solid-States Circuits Magazine - Fall 2021 - 113
IEEE Solid-States Circuits Magazine - Fall 2021 - 114
IEEE Solid-States Circuits Magazine - Fall 2021 - 115
IEEE Solid-States Circuits Magazine - Fall 2021 - 116
IEEE Solid-States Circuits Magazine - Fall 2021 - 117
IEEE Solid-States Circuits Magazine - Fall 2021 - 118
IEEE Solid-States Circuits Magazine - Fall 2021 - 119
IEEE Solid-States Circuits Magazine - Fall 2021 - 120
IEEE Solid-States Circuits Magazine - Fall 2021 - 121
IEEE Solid-States Circuits Magazine - Fall 2021 - 122
IEEE Solid-States Circuits Magazine - Fall 2021 - 123
IEEE Solid-States Circuits Magazine - Fall 2021 - 124
IEEE Solid-States Circuits Magazine - Fall 2021 - 125
IEEE Solid-States Circuits Magazine - Fall 2021 - 126
IEEE Solid-States Circuits Magazine - Fall 2021 - 127
IEEE Solid-States Circuits Magazine - Fall 2021 - 128
IEEE Solid-States Circuits Magazine - Fall 2021 - 129
IEEE Solid-States Circuits Magazine - Fall 2021 - 130
IEEE Solid-States Circuits Magazine - Fall 2021 - 131
IEEE Solid-States Circuits Magazine - Fall 2021 - 132
IEEE Solid-States Circuits Magazine - Fall 2021 - 133
IEEE Solid-States Circuits Magazine - Fall 2021 - 134
IEEE Solid-States Circuits Magazine - Fall 2021 - 135
IEEE Solid-States Circuits Magazine - Fall 2021 - 136
IEEE Solid-States Circuits Magazine - Fall 2021 - 137
IEEE Solid-States Circuits Magazine - Fall 2021 - 138
IEEE Solid-States Circuits Magazine - Fall 2021 - 139
IEEE Solid-States Circuits Magazine - Fall 2021 - 140
IEEE Solid-States Circuits Magazine - Fall 2021 - 141
IEEE Solid-States Circuits Magazine - Fall 2021 - 142
IEEE Solid-States Circuits Magazine - Fall 2021 - 143
IEEE Solid-States Circuits Magazine - Fall 2021 - 144
IEEE Solid-States Circuits Magazine - Fall 2021 - 145
IEEE Solid-States Circuits Magazine - Fall 2021 - 146
IEEE Solid-States Circuits Magazine - Fall 2021 - 147
IEEE Solid-States Circuits Magazine - Fall 2021 - 148
IEEE Solid-States Circuits Magazine - Fall 2021 - 149
IEEE Solid-States Circuits Magazine - Fall 2021 - 150
IEEE Solid-States Circuits Magazine - Fall 2021 - 151
IEEE Solid-States Circuits Magazine - Fall 2021 - 152
IEEE Solid-States Circuits Magazine - Fall 2021 - 153
IEEE Solid-States Circuits Magazine - Fall 2021 - 154
IEEE Solid-States Circuits Magazine - Fall 2021 - 155
IEEE Solid-States Circuits Magazine - Fall 2021 - 156
IEEE Solid-States Circuits Magazine - Fall 2021 - 157
IEEE Solid-States Circuits Magazine - Fall 2021 - 158
IEEE Solid-States Circuits Magazine - Fall 2021 - 159
IEEE Solid-States Circuits Magazine - Fall 2021 - 160
IEEE Solid-States Circuits Magazine - Fall 2021 - 161
IEEE Solid-States Circuits Magazine - Fall 2021 - 162
IEEE Solid-States Circuits Magazine - Fall 2021 - 163
IEEE Solid-States Circuits Magazine - Fall 2021 - 164
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com