IEEE Solid-States Circuits Magazine - Summer 2022 - 52

[30] C. Shi, T. Costa, J. Elloian, Y. Zhang, and
K. Shepard, " A 0.065-mm3 monolithically-integrated
ultrasonic wireless sensing
mote for real-time physiological temperature
monitoring, " IEEE Trans. Biomed.
Circuits Syst., vol. 14, no. 3, pp. 412-424,
Jun. 2020, doi: 10.1109/TBCAS.2020.
2971066.
[31] S. Sonmezoglu and M. M. Maharbiz, " A
4.5 mm3 deep-tissue ultrasonic implantable
luminescence oxygen sensor, " in
Proc. IEEE Int. Solid-State Circuits Conf.,
Feb. 2020, pp. 454-456, doi: 10.1109/
ISSCC19947.2020.9062946.
[32] T. Chang, M. Weber, J. Charthad, S. Baltsavias,
and A. Arbabian, " End-to-end design
of efficient ultrasonic power links
for scaling towards
submillimeter implantable
receivers, " IEEE Trans. Biomed.
Circuits Syst., vol. 12, no. 5, pp. 1100-
1111, Oct. 2018, doi: 10.1109/TBCAS.2018.
2871470.
[33] M. Wang, T. Chang, T. Teisberg, M.
Weber, J. Charthad, and A. Arbabian,
" Closed-loop ultrasonic power and communication
with multiple miniaturized
active
implantable medical devices, "
in Proc. IEEE Int. Ultrason. Symp., Sep.
2017, pp. 1-4, doi: 10.1109/ULTSYM.2017.
8092116.
[34] B. Benedict, M. Ghanbari, S. Alamouti,
N. Ersumo, and R. Muller, " Time reversal
beamforming for powering ultrasonic implants, "
in Proc. IEEE/EMBS Conf. Neural
Eng., May 2021, pp. 647-650, doi: 10.1109/
NER49283.2021.9441162.
[35] M. Ghanbari and R. Muller, " Optimizing
volumetric efficiency and backscatter
communication in biosensing ultrasonic
implants, " IEEE Trans. Biomed. Circuits
Syst., vol. 14, no. 6, pp. 1381-1392, Dec.
2020, doi: 10.1109/TBCAS.2020.3033488.
[36] M. Meng and M. Kiani, " Design and optimization
of ultrasonic wireless power
transmission links for millimeter-sized
biomedical implants, " IEEE Trans. Biomed.
Circuits Syst., vol. 11, no. 1, pp. 98-107,
Feb. 2017, doi: 10.1109/TBCAS.2016.
2583783.
[37] Z. Kashani, S. Ilham, and M. Kiani, " Design
and optimization of ultrasonic links
with phased arrays for wireless power
transmission to biomedical
IEEE Trans. Biomed. Circuits Syst., vol. 16,
no. 1, pp. 64-78, Feb. 2022, doi: 10.1109/
TBCAS.2022.3140591.
[38] A. Al-Kalbani, M. Yuce, and J. Redouté,
" A biosafety comparison between capacitive
and inductive coupling in biomedical
implants, " IEEE Antennas Wireless Propag.
Lett., vol. 13, pp. 1168-1171, 2014, doi:
10.1109/LAWP.2014.2328375.
[39] Z. Yu et al., " MagNI: A magnetoelectrically
powered and controlled wireless
neurostimulating implant, " IEEE Trans.
Biomed. Circuits Syst., vol. 14, no. 6,
pp. 1241-1252, Dec. 2020, doi: 10.1109/
TBCAS.2020.3037862.
[40] A. Singer et al., " Magnetoelectric materials
for miniature, wireless neural stimulation
at therapeutic frequencies, " Neuron,
vol. 107, no. 4, pp. 631-643, Aug. 2020,
doi: 10.1016/j.neuron.2020.05.019.
[41] B. Truong, E. Andersen, C. Casados, and S.
Roundy, " Magnetoelectric wireless power
transfer for biomedical implants: Effects
of non-uniform magnetic field, alignment
and orientation, " Sensors Actuators
A, Phys., vol. 316, pp. 112,269, Dec. 2020,
doi: 10.1016/j.sna.2020.112269.
implants, "
[42] T. Le, J. Han, A. Jouanne, K. Marayam, and
T. Fiez, " Piezoelectric micro-power generation
interface circuits, " IEEE J. Solid-State
Circuits, vol. 41, no. 6, pp. 1411-1420, Jun.
2006, doi: 10.1109/JSSC.2006.874286.
[43] C. Huang, T. Kawajiri, and H. Ishikuro,
" A near-optimum 13.56 MHz CMOS active
rectifier with circuit-delay real-time
calibrations for high-current biomedical
implants, " IEEE J. Solid State Circuits, vol.
51, no. 8, pp. 1797-1809, Aug. 2016, doi:
10.1109/JSSC.2016.2582871.
[44] R. Erfani, F. Marefat, S. Nag, and P. Mohseni,
" A 1-10-MHz frequency-aware CMOS
active rectifier with dual-loop adaptive
delay compensation and >230-mW output
power for capacitively powered biomedical
implants, " IEEE J. Solid State Circuits,
vol. 55, no. 3, pp. 756-766, Mar. 2020, doi:
10.1109/JSSC.2019.2956883.
[45] L. Cheng, W.-H. Ki, Y. Lu, and T.-S. Yim,
" Adaptive on/off delay compensated
active rectifiers for wireless power transfer
systems, " IEEE J. Solid State Circuits,
vol. 51, no. 3, pp. 712-723, Mar. 2016, doi:
10.1109/JSSC.2016.2517119.
[46] L. Cheng, W. Ki, and C. Tsui, " A 6.78MHz
single-stage wireless power receiver
using a 3-mode reconfigurable resonant
regulating rectifier, " IEEE J. Solid
State Circuits, vol. 52, no. 5, pp. 1412-
1423, May 2017, doi: 10.1109/JSSC.2017.
2657603.
[47] C. Kim, S. Ha, J. Park, A. Akinin, P. P. Mercier,
and G. Cauwenberghs, " A 144MHz
integrated resonant regulating rectifier
with hybrid pulse modulation, " in Proc.
Symp. VLSI Circuits, Jun. 2015, pp. C284-
C285, doi: 10.1109/VLSIC.2015.7231292.
[48] H. Sadeghi and M. Kiani, " Self-regulated
reconfigurable voltage/current-mode
inductive power management, " IEEE J.
Solid-State Circuits, vol. 52, no. 11, pp. 3056-
3070, Nov. 2017, doi: 10.1109/JSSC.2017.
2737138.
[49] H. Lee and M. Ghovanloo, " An adaptive reconfigurable
active voltage doubler/rectifier
for extended-range inductive power
transmission, " in Proc. IEEE Int. Solid-State
Circuits Conf., Feb. 2012, pp. 286-288.
[50] E. Lee, " A voltage doubling passive rectifier/regulator
circuit for biomedical
implants, " in Proc. IEEE Custom Integr.
Circuits Conf., Sep. 2015, pp. 1-4, doi:
10.1109/CICC.2015.7338428.
[51] C. Kim et al., " A fully integrated 144 MHz
wireless-power-receiver-on-chip with an
adaptive buck-boost regulating rectifier
and low-loss h-tree signal distribution, "
in Proc. Symp. VLSI Cir., Jun. 2016, pp. 1-2,
doi: 10.1109/VLSIC.2016.7573492.
[52] M. Choi, T. Jang, J. Jeong, S. Jeong, D.
Blaauw, and D. Sylvester, " A current-mode
wireless power receiver with optimal
resonant cycle tracking for implantable
systems, " in Proc. IEEE Int. Solid-State Circuits
Conf., Feb. 2016, pp. 372-373, doi:
10.1109/ISSCC.2016.7418062.
[53] M. Taghadosi and H. Kassiri, " A calibration-free
energy-efficient IC for linkadaptive
real-time energy storage optimization
of CM inductive power receivers, "
IEEE J. Solid-State Circuits, vol. 57, no. 3,
pp. 793-802, Mar. 2022, doi: 10.1109/
JSSC.2021.3123160.
[54] S. Shin et al., " A 13.56MHz time-interleaved
resonant-voltage-mode wireless-power
receiver with isolated resonator and quasi-resonant
boost converter for implantable
systems, " in Proc. IEEE Int. Solid-State
Circuits Conf., Feb. 2018, pp. 154-156, doi:
10.1109/ISSCC.2018.8310230.
[55] H. Sadeghi and M. Kiani, " A self-regulated
voltage/current-mode
integrated power
management with seamless mode transition
and extended input-voltage range, "
in Proc. IEEE Custom Integr. Circuits Conf.,
Apr. 2018, pp. 1-3, doi: 10.1109/CICC.2018.
8357022.
[56] H. Sadeghi, P. Graybill, and M. Kiani, " A
dual-output reconfigurable shared-inductor
boost-converter/current-mode inductive
power management ASIC with 750%
extended output-power range, adaptive
switching control, and voltage-power
regulation, " IEEE Trans. Biomed. Circuits
Syst., vol. 13, pp. 1075-1086, Oct. 2019,
doi: 10.1109/TBCAS.2019.2937253.
About the Author
Mehdi Kiani (mkiani@psu.edu)
received
his B.S. degree from Shiraz
University, Shiraz, Iran, and his M.S.
degree from the Sharif University of
Technology, Tehran, Iran, in 2005
and 2008, respectively. He received
his M.S. and Ph.D. degrees in electrical
and computer engineering from
the Georgia Institute of Technology
in 2012 and 2013, respectively. Currently,
he is with the School of Electrical
Engineering and Computer
Science, Pennsylvania State University,
University Park, Pennsylvania,
16802, USA. He joined the faculty of
the School of Electrical Engineering
and Computer Science at the Pennsylvania
State University in August 2014.
His research interests are in the multidisciplinary
areas of analog, mixedsignal,
and power-management ICs;
wireless implantable medical devices;
neural interfaces; and ultrasound-based
medical systems. He
was a recipient of the 2020 National
Science Foundation CAREER Award.
He is currently an associate editor of
IEEE Transactions on Biomedical Circuits
and Systems and IEEE Transactions
on Biomedical Engineering. He
currently serves as the technical program
committee (TPC) member of the
IEEE International Solid-State Circuits
Conference (ISSCC). He also served
as a TPC member of the IEEE Custom
Integrated Circuits Conference (CICC)
and IEEE Sensors Conference. He is a
Senior Member of IEEE.
52 SUMMER 2022
IEEE SOLID-STATE CIRCUITS MAGAZINE

IEEE Solid-States Circuits Magazine - Summer 2022

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Summer 2022

Contents
IEEE Solid-States Circuits Magazine - Summer 2022 - Cover1
IEEE Solid-States Circuits Magazine - Summer 2022 - Cover2
IEEE Solid-States Circuits Magazine - Summer 2022 - Contents
IEEE Solid-States Circuits Magazine - Summer 2022 - 2
IEEE Solid-States Circuits Magazine - Summer 2022 - 3
IEEE Solid-States Circuits Magazine - Summer 2022 - 4
IEEE Solid-States Circuits Magazine - Summer 2022 - 5
IEEE Solid-States Circuits Magazine - Summer 2022 - 6
IEEE Solid-States Circuits Magazine - Summer 2022 - 7
IEEE Solid-States Circuits Magazine - Summer 2022 - 8
IEEE Solid-States Circuits Magazine - Summer 2022 - 9
IEEE Solid-States Circuits Magazine - Summer 2022 - 10
IEEE Solid-States Circuits Magazine - Summer 2022 - 11
IEEE Solid-States Circuits Magazine - Summer 2022 - 12
IEEE Solid-States Circuits Magazine - Summer 2022 - 13
IEEE Solid-States Circuits Magazine - Summer 2022 - 14
IEEE Solid-States Circuits Magazine - Summer 2022 - 15
IEEE Solid-States Circuits Magazine - Summer 2022 - 16
IEEE Solid-States Circuits Magazine - Summer 2022 - 17
IEEE Solid-States Circuits Magazine - Summer 2022 - 18
IEEE Solid-States Circuits Magazine - Summer 2022 - 19
IEEE Solid-States Circuits Magazine - Summer 2022 - 20
IEEE Solid-States Circuits Magazine - Summer 2022 - 21
IEEE Solid-States Circuits Magazine - Summer 2022 - 22
IEEE Solid-States Circuits Magazine - Summer 2022 - 23
IEEE Solid-States Circuits Magazine - Summer 2022 - 24
IEEE Solid-States Circuits Magazine - Summer 2022 - 25
IEEE Solid-States Circuits Magazine - Summer 2022 - 26
IEEE Solid-States Circuits Magazine - Summer 2022 - 27
IEEE Solid-States Circuits Magazine - Summer 2022 - 28
IEEE Solid-States Circuits Magazine - Summer 2022 - 29
IEEE Solid-States Circuits Magazine - Summer 2022 - 30
IEEE Solid-States Circuits Magazine - Summer 2022 - 31
IEEE Solid-States Circuits Magazine - Summer 2022 - 32
IEEE Solid-States Circuits Magazine - Summer 2022 - 33
IEEE Solid-States Circuits Magazine - Summer 2022 - 34
IEEE Solid-States Circuits Magazine - Summer 2022 - 35
IEEE Solid-States Circuits Magazine - Summer 2022 - 36
IEEE Solid-States Circuits Magazine - Summer 2022 - 37
IEEE Solid-States Circuits Magazine - Summer 2022 - 38
IEEE Solid-States Circuits Magazine - Summer 2022 - 39
IEEE Solid-States Circuits Magazine - Summer 2022 - 40
IEEE Solid-States Circuits Magazine - Summer 2022 - 41
IEEE Solid-States Circuits Magazine - Summer 2022 - 42
IEEE Solid-States Circuits Magazine - Summer 2022 - 43
IEEE Solid-States Circuits Magazine - Summer 2022 - 44
IEEE Solid-States Circuits Magazine - Summer 2022 - 45
IEEE Solid-States Circuits Magazine - Summer 2022 - 46
IEEE Solid-States Circuits Magazine - Summer 2022 - 47
IEEE Solid-States Circuits Magazine - Summer 2022 - 48
IEEE Solid-States Circuits Magazine - Summer 2022 - 49
IEEE Solid-States Circuits Magazine - Summer 2022 - 50
IEEE Solid-States Circuits Magazine - Summer 2022 - 51
IEEE Solid-States Circuits Magazine - Summer 2022 - 52
IEEE Solid-States Circuits Magazine - Summer 2022 - 53
IEEE Solid-States Circuits Magazine - Summer 2022 - 54
IEEE Solid-States Circuits Magazine - Summer 2022 - 55
IEEE Solid-States Circuits Magazine - Summer 2022 - 56
IEEE Solid-States Circuits Magazine - Summer 2022 - 57
IEEE Solid-States Circuits Magazine - Summer 2022 - 58
IEEE Solid-States Circuits Magazine - Summer 2022 - 59
IEEE Solid-States Circuits Magazine - Summer 2022 - 60
IEEE Solid-States Circuits Magazine - Summer 2022 - 61
IEEE Solid-States Circuits Magazine - Summer 2022 - 62
IEEE Solid-States Circuits Magazine - Summer 2022 - 63
IEEE Solid-States Circuits Magazine - Summer 2022 - 64
IEEE Solid-States Circuits Magazine - Summer 2022 - 65
IEEE Solid-States Circuits Magazine - Summer 2022 - 66
IEEE Solid-States Circuits Magazine - Summer 2022 - 67
IEEE Solid-States Circuits Magazine - Summer 2022 - 68
IEEE Solid-States Circuits Magazine - Summer 2022 - 69
IEEE Solid-States Circuits Magazine - Summer 2022 - 70
IEEE Solid-States Circuits Magazine - Summer 2022 - 71
IEEE Solid-States Circuits Magazine - Summer 2022 - 72
IEEE Solid-States Circuits Magazine - Summer 2022 - 73
IEEE Solid-States Circuits Magazine - Summer 2022 - 74
IEEE Solid-States Circuits Magazine - Summer 2022 - 75
IEEE Solid-States Circuits Magazine - Summer 2022 - 76
IEEE Solid-States Circuits Magazine - Summer 2022 - 77
IEEE Solid-States Circuits Magazine - Summer 2022 - 78
IEEE Solid-States Circuits Magazine - Summer 2022 - 79
IEEE Solid-States Circuits Magazine - Summer 2022 - 80
IEEE Solid-States Circuits Magazine - Summer 2022 - 81
IEEE Solid-States Circuits Magazine - Summer 2022 - 82
IEEE Solid-States Circuits Magazine - Summer 2022 - 83
IEEE Solid-States Circuits Magazine - Summer 2022 - 84
IEEE Solid-States Circuits Magazine - Summer 2022 - 85
IEEE Solid-States Circuits Magazine - Summer 2022 - 86
IEEE Solid-States Circuits Magazine - Summer 2022 - 87
IEEE Solid-States Circuits Magazine - Summer 2022 - 88
IEEE Solid-States Circuits Magazine - Summer 2022 - 89
IEEE Solid-States Circuits Magazine - Summer 2022 - 90
IEEE Solid-States Circuits Magazine - Summer 2022 - 91
IEEE Solid-States Circuits Magazine - Summer 2022 - 92
IEEE Solid-States Circuits Magazine - Summer 2022 - 93
IEEE Solid-States Circuits Magazine - Summer 2022 - 94
IEEE Solid-States Circuits Magazine - Summer 2022 - 95
IEEE Solid-States Circuits Magazine - Summer 2022 - 96
IEEE Solid-States Circuits Magazine - Summer 2022 - 97
IEEE Solid-States Circuits Magazine - Summer 2022 - 98
IEEE Solid-States Circuits Magazine - Summer 2022 - 99
IEEE Solid-States Circuits Magazine - Summer 2022 - 100
IEEE Solid-States Circuits Magazine - Summer 2022 - 101
IEEE Solid-States Circuits Magazine - Summer 2022 - 102
IEEE Solid-States Circuits Magazine - Summer 2022 - 103
IEEE Solid-States Circuits Magazine - Summer 2022 - 104
IEEE Solid-States Circuits Magazine - Summer 2022 - 105
IEEE Solid-States Circuits Magazine - Summer 2022 - 106
IEEE Solid-States Circuits Magazine - Summer 2022 - 107
IEEE Solid-States Circuits Magazine - Summer 2022 - 108
IEEE Solid-States Circuits Magazine - Summer 2022 - 109
IEEE Solid-States Circuits Magazine - Summer 2022 - 110
IEEE Solid-States Circuits Magazine - Summer 2022 - 111
IEEE Solid-States Circuits Magazine - Summer 2022 - 112
IEEE Solid-States Circuits Magazine - Summer 2022 - Cover3
IEEE Solid-States Circuits Magazine - Summer 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com