IEEE Solid-States Circuits Magazine - Summer 2022 - 64

Mixed-signal transceivers will be particularly
instrumental in enabling future hybrid and
digital beamforming systems, owing to their
compact designs.
flexible, wideband, direct-to-digital
operation. Such operation enables
bits-to-RF/RF-to-bits operation in the RF
spectrum or can serve as a direct-digital
intermediate-frequency transceiver
for mm-wave applications. Work
on mixed-signal TXs has progressed
directly into the mm-wave spectrum
using embedded frequency multipliers.
Significantly less work has
been done on mixed-signal RX, and
both fields are ripe with opportunities
as future generations of communications
systems place emphasis
on wider band operation at a higher
frequency. Mixed-signal transceivers
will be particularly instrumental in
enabling future hybrid and digital
beamforming systems, owing to
their compact designs. The potential
for growth in mixed-signal transceivers
does seem truly limitless.
References
[1] G. Moore, " Cramming more components
onto integrated circuits, " Proc. IEEE, vol.
86, no. 1, pp. 82-85, 1998, doi: 10.1109/
JPROC.1998.658762.
[2] W. M. Holt, " Moore's law: A path going forward, "
in Proc. IEEE Int. Solid-State Circuit
Conf. Dig. Tech. Papers, 2016, pp. 8-13,
doi: 10.1109/ISSCC.2016.7417888.
[3] " Transistor count - Wik ipedia, the
free encyclopedia. " Wikipedia. https://
en.wikipedia.org/wiki/Transistor_count
(Accessed: Apr. 5, 2022).
[4] C.-H. Jan et al., " RF CMOS technology scaling
in high-k/metal gate era for RF SoC (system-on-chip)
applications, " in Proc.
IEEE
Int. Electron Dev. Meeting, 2010, pp. 27.2.1-
27.2.4, doi: 10.1109/IEDM.2010.5703431.
[5] R. B. Staszewski et al., " All-digital PLL and
transmitter for mobile phones, " IEEE J. SolidState
Circuits, vol. 40, no. 12, pp. 2469-2482,
2005, doi: 10.1109/JSSC.2005.857417.
[6] A. Kavousian, D. K. Su, M. Hekmat, A.
Shirvani, and B. A. Wooley, " A digitally
modulated polar CMOS power amplifier
with a 20-MHz channel bandwidth, " IEEE
J. Solid-State Circuits, vol. 43, no. 10, pp.
2251-2258, 2008, doi: 10.1109/JSSC.2008.
2004338.
[7] C. D. Presti, F. Carrara, A. Scuderi, P. M.
Asbeck, and G. Palmisano,
" A 25 dBm
digitally modulated CMOS power amplifier
for WCDMA/EDGE/OFDM with adaptive
digital predistortion and efficient
power control, " IEEE J. Solid-State Circuits,
vol. 44, no. 7, pp. 1883-1896, 2009, doi:
10.1109/JSSC.2009.2020226.
[8] D. Chowdhury, S. V. Thyagarajan, L. Ye, E.
Alon, and A. M. Niknejad, " A fully-integrated
efficient CMOS inverse class-D power
amplifier for digital polar transmitters, "
IEEE J. Solid-State Circuits, vol. 47, no. 5, pp.
1113-1122, 2012, doi: 10.1109/JSSC.2012.
2185555.
[9] S.-M. Yoo, J. S. Walling, E. C. Woo, B. Jann,
and D. J. Allstot, " A switched-capacitor
RF power amplifier, " IEEE J. Solid-State
Circuits, vol. 46, no. 12, pp. 2977-2987,
2011, doi: 10.1109/JSSC.2011.2163469.
[10] K. Khalaf et al., " Digitally modulated
CMOS polar transmitters for highly-efficient
mm-wave wireless
communication, "
IEEE J. Solid-State Circuits, vol. 51,
no. 7, pp. 1579-1592, 2016, doi: 10.1109/
JSSC.2016.2544784.
[11] K. Dasgupta et al., " A 60-GHz transceiver
and baseband with polarization MIMO in
28-nm CMOS, " IEEE J. Solid-State Circuits,
vol. 53, no. 12, pp. 3613-3627, 2018, doi:
10.1109/JSSC.2018.2876473.
[12] H. M. Nguyen, J. S. Walling, A. Zhu, and
R. B. Staszewski, " A mm-wave switchedcapacitor
RFDAC, " IEEE J. Solid-State Circuits,
vol. 57, no. 4, pp. 1224-1238, 2022,
doi: 10.1109/JSSC.2022.3142718.
[13] S.-W. Yoo, S.-C. Hung, J. S. Walling, D. J.
Allstot, and S.-M. Yoo, " A 0.26mm2 DPDless
quadrature digital transmitter
with < −40dB EVM over > 30dB Pout range
in 65nm CMOS, " in Proc. IEEE Int. Solid-State
Circuits Conf. Dig. Tech. Papers, 2020,
pp. 184-186, doi: 10.1109/ISSCC19947.
2020.9063070.
[14] A. Ben-Bassat et al., " A fully integrated
27-dBm dual-band all-digital polar transmitter
supporting 160 MHz for Wi-Fi 6
applications, " IEEE J. Solid-State Circuits,
vol. 55, no. 12, pp. 3414-3425, 2020, doi:
10.1109/JSSC.2020.3024973.
[15] M. Hashemi, Y. Shen, M. Mehrpoo, M. S.
Alavi, and L. C. N. de Vreede, " An intrinsically
linear wideband polar digital power
amplifier, " IEEE J. Solid-State Circuits,
vol. 52, no. 12, pp. 3312-3328, 2017, doi:
10.1109/JSSC.2017.2737647.
[16] A. Azam, Z. Bai, and J. S. Walling, " Leveraging
programmable capacitor arrays for
frequency-tunable digital power amplifiers, "
IEEE Trans. Microw. Theory Techn.,
vol. 68, no. 6, pp. 1983-1994, 2020, doi:
10.1109/TMTT.2020.2976921.
[17] M. S. Alavi, R. B. Staszewski, L. C. N. de
Vreede, and J. R. Long, " A wideband 2 × 13-bit
all-digital I/Q RF-DAC, " IEEE Trans. Microw.
Theory Techn., vol. 62, no. 4, pp. 732-752,
2014, doi: 10.1109/TMTT.2014.2307876.
[18] W. Yuan, V. Aparin, J. Dunworth, L. Seward,
and J. S. Walling, " A quadrature switched
capacitor power amplifier, " IEEE J. SolidState
Circuits, vol. 51, no. 5, pp. 1200-1209,
2016, doi: 10.1109/JSSC.2015.2496956.
[19] H. Jin, D. Kim, and B. Kim, " Efficient digital
quadrature transmitter based on IQ
cell sharing, " IEEE J. Solid-State Circuits,
vol. 52, no. 5, pp. 1345-1357, 2017, doi:
10.1109/JSSC.2017.2655058.
[20] W. Yuan and J. S. Walling, " A multiphase
switched capacitor power amplifier, "
IEEE J. Solid-State Circuits, vol. 52, no. 5,
pp. 1320-1330, 2017, doi: 10.1109/JSSC.
2016.2626277.
[21] S.-W. Yoo, S.-C. Hung, and S.-M. Yoo, " A
watt-level quadrature class-G switchedcapacitor
power amplifier with linearization
techniques, " IEEE J. Solid-State Circuits,
vol. 54, no. 5, pp. 1274-1287, 2019,
doi: 10.1109/JSSC.2019.2904209.
[22] S. Devarajan et al., " A 12-b 10-GS/s interleaved
pipeline ADC in 28-nm CMOS
technology, " IEEE J. Solid-State Circuits,
vol. 52, no. 12, pp. 3204-3218, 2017, doi:
10.1109/JSSC.2017.2747758.
[23] T. Kihara, T. Takahashi, and T. Yoshimura,
" Digital mismatch correction for
bandpass sampling four-channel timeinterleaved
ADCs in direct-RF sampling
receivers, " IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 66, no. 6, pp. 2007-2016,
2019, doi: 10.1109/TCSI.2019.2903650.
[24] M. Straayer et al., " A 4GS/s time-interleaved
RF ADC in 65nm CMOS with 4GHz
input bandwidth, " in Proc. IEEE Int. SolidState
Circuits Conf. Dig. Tech. Papers,
2016, pp. 464-465, doi: 10.1109/ISSCC.
2016.7418108.
[25] S. Pavan, R. Shreier, and G. C. Temes, Understanding
Delta-Sigma Data Converters.
Hoboken, NJ, USA: Wiley, 2016.
[26] S. Gupta, D. Gangopadhyay, H. Lakdawala,
J. C. Rudell, and D. J. Allstot, " A 0.8-2 GHz
fully-integrated QPLL-timed direct-RFsampling
bandpass ΣΔ ADC in 0.13 μm
CMOS, " IEEE J. Solid-State Circuits, vol. 47,
no. 5, pp. 1141-1153, 2012, doi: 10.1109/
JSSC.2012.2185530.
[27] E. Martens et al., " RF-to-baseband digitization
in 40 nm CMOS with RF bandpass
ΔΣ modulator and polyphaser decimation
filter, " IEEE J. Solid-State Circuits, vol. 47,
no. 4, pp. 990-1002, 2012, doi: 10.1109/
JSSC.2012.2185149.
[28] C.-T. Chen, C.-H. Hsiao, T.-S. Horng, K.C.
Peng, and C.-J. Li, " Cognitive polar
receiver using two injection-locked
oscillator stages, " IEEE Trans. Microw.
Theory Techn., vol. 59, no. 12, pp. 3484-
3493, 2011, doi: 10.1109/TMTT.2011.
2172811.
[29] H. Wang, F. F. Dai, Z. Su, and Y. Wang,
" Sub-sampling direct RF-to-digital converter
with 1024-APSK modulation for high
throughput polar receiver, " IEEE J. SolidState
Circuits, vol. 55, no. 4, pp. 1064-1076,
2020, doi: 10.1109/JSSC.2019.2963589.
About the Author
Jeffrey Walling (jswalling@vt.edu)
received his B.S. degree from the University
of South Florida, Tampa, Florida,
and his M.S. and Ph.D. degrees
from the University of Washington,
Seattle. In 2010, he became an assistant
professor at Rutgers University
and then an associate professor at the
University of Utah. He is now an associate
professor of electrical and computer
engineering with Virginia Tech,
Blacksburg, Virginia, 24060, USA. His
current research interests include RF,
mm-wave, and THz transceivers for
next-generation communications. He
is a Senior Member of IEEE.
64 SUMMER 2022
IEEE SOLID-STATE CIRCUITS MAGAZINE
https://en.wikipedia.org/wiki/Transistor_count https://en.wikipedia.org/wiki/Transistor_count

IEEE Solid-States Circuits Magazine - Summer 2022

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Summer 2022

Contents
IEEE Solid-States Circuits Magazine - Summer 2022 - Cover1
IEEE Solid-States Circuits Magazine - Summer 2022 - Cover2
IEEE Solid-States Circuits Magazine - Summer 2022 - Contents
IEEE Solid-States Circuits Magazine - Summer 2022 - 2
IEEE Solid-States Circuits Magazine - Summer 2022 - 3
IEEE Solid-States Circuits Magazine - Summer 2022 - 4
IEEE Solid-States Circuits Magazine - Summer 2022 - 5
IEEE Solid-States Circuits Magazine - Summer 2022 - 6
IEEE Solid-States Circuits Magazine - Summer 2022 - 7
IEEE Solid-States Circuits Magazine - Summer 2022 - 8
IEEE Solid-States Circuits Magazine - Summer 2022 - 9
IEEE Solid-States Circuits Magazine - Summer 2022 - 10
IEEE Solid-States Circuits Magazine - Summer 2022 - 11
IEEE Solid-States Circuits Magazine - Summer 2022 - 12
IEEE Solid-States Circuits Magazine - Summer 2022 - 13
IEEE Solid-States Circuits Magazine - Summer 2022 - 14
IEEE Solid-States Circuits Magazine - Summer 2022 - 15
IEEE Solid-States Circuits Magazine - Summer 2022 - 16
IEEE Solid-States Circuits Magazine - Summer 2022 - 17
IEEE Solid-States Circuits Magazine - Summer 2022 - 18
IEEE Solid-States Circuits Magazine - Summer 2022 - 19
IEEE Solid-States Circuits Magazine - Summer 2022 - 20
IEEE Solid-States Circuits Magazine - Summer 2022 - 21
IEEE Solid-States Circuits Magazine - Summer 2022 - 22
IEEE Solid-States Circuits Magazine - Summer 2022 - 23
IEEE Solid-States Circuits Magazine - Summer 2022 - 24
IEEE Solid-States Circuits Magazine - Summer 2022 - 25
IEEE Solid-States Circuits Magazine - Summer 2022 - 26
IEEE Solid-States Circuits Magazine - Summer 2022 - 27
IEEE Solid-States Circuits Magazine - Summer 2022 - 28
IEEE Solid-States Circuits Magazine - Summer 2022 - 29
IEEE Solid-States Circuits Magazine - Summer 2022 - 30
IEEE Solid-States Circuits Magazine - Summer 2022 - 31
IEEE Solid-States Circuits Magazine - Summer 2022 - 32
IEEE Solid-States Circuits Magazine - Summer 2022 - 33
IEEE Solid-States Circuits Magazine - Summer 2022 - 34
IEEE Solid-States Circuits Magazine - Summer 2022 - 35
IEEE Solid-States Circuits Magazine - Summer 2022 - 36
IEEE Solid-States Circuits Magazine - Summer 2022 - 37
IEEE Solid-States Circuits Magazine - Summer 2022 - 38
IEEE Solid-States Circuits Magazine - Summer 2022 - 39
IEEE Solid-States Circuits Magazine - Summer 2022 - 40
IEEE Solid-States Circuits Magazine - Summer 2022 - 41
IEEE Solid-States Circuits Magazine - Summer 2022 - 42
IEEE Solid-States Circuits Magazine - Summer 2022 - 43
IEEE Solid-States Circuits Magazine - Summer 2022 - 44
IEEE Solid-States Circuits Magazine - Summer 2022 - 45
IEEE Solid-States Circuits Magazine - Summer 2022 - 46
IEEE Solid-States Circuits Magazine - Summer 2022 - 47
IEEE Solid-States Circuits Magazine - Summer 2022 - 48
IEEE Solid-States Circuits Magazine - Summer 2022 - 49
IEEE Solid-States Circuits Magazine - Summer 2022 - 50
IEEE Solid-States Circuits Magazine - Summer 2022 - 51
IEEE Solid-States Circuits Magazine - Summer 2022 - 52
IEEE Solid-States Circuits Magazine - Summer 2022 - 53
IEEE Solid-States Circuits Magazine - Summer 2022 - 54
IEEE Solid-States Circuits Magazine - Summer 2022 - 55
IEEE Solid-States Circuits Magazine - Summer 2022 - 56
IEEE Solid-States Circuits Magazine - Summer 2022 - 57
IEEE Solid-States Circuits Magazine - Summer 2022 - 58
IEEE Solid-States Circuits Magazine - Summer 2022 - 59
IEEE Solid-States Circuits Magazine - Summer 2022 - 60
IEEE Solid-States Circuits Magazine - Summer 2022 - 61
IEEE Solid-States Circuits Magazine - Summer 2022 - 62
IEEE Solid-States Circuits Magazine - Summer 2022 - 63
IEEE Solid-States Circuits Magazine - Summer 2022 - 64
IEEE Solid-States Circuits Magazine - Summer 2022 - 65
IEEE Solid-States Circuits Magazine - Summer 2022 - 66
IEEE Solid-States Circuits Magazine - Summer 2022 - 67
IEEE Solid-States Circuits Magazine - Summer 2022 - 68
IEEE Solid-States Circuits Magazine - Summer 2022 - 69
IEEE Solid-States Circuits Magazine - Summer 2022 - 70
IEEE Solid-States Circuits Magazine - Summer 2022 - 71
IEEE Solid-States Circuits Magazine - Summer 2022 - 72
IEEE Solid-States Circuits Magazine - Summer 2022 - 73
IEEE Solid-States Circuits Magazine - Summer 2022 - 74
IEEE Solid-States Circuits Magazine - Summer 2022 - 75
IEEE Solid-States Circuits Magazine - Summer 2022 - 76
IEEE Solid-States Circuits Magazine - Summer 2022 - 77
IEEE Solid-States Circuits Magazine - Summer 2022 - 78
IEEE Solid-States Circuits Magazine - Summer 2022 - 79
IEEE Solid-States Circuits Magazine - Summer 2022 - 80
IEEE Solid-States Circuits Magazine - Summer 2022 - 81
IEEE Solid-States Circuits Magazine - Summer 2022 - 82
IEEE Solid-States Circuits Magazine - Summer 2022 - 83
IEEE Solid-States Circuits Magazine - Summer 2022 - 84
IEEE Solid-States Circuits Magazine - Summer 2022 - 85
IEEE Solid-States Circuits Magazine - Summer 2022 - 86
IEEE Solid-States Circuits Magazine - Summer 2022 - 87
IEEE Solid-States Circuits Magazine - Summer 2022 - 88
IEEE Solid-States Circuits Magazine - Summer 2022 - 89
IEEE Solid-States Circuits Magazine - Summer 2022 - 90
IEEE Solid-States Circuits Magazine - Summer 2022 - 91
IEEE Solid-States Circuits Magazine - Summer 2022 - 92
IEEE Solid-States Circuits Magazine - Summer 2022 - 93
IEEE Solid-States Circuits Magazine - Summer 2022 - 94
IEEE Solid-States Circuits Magazine - Summer 2022 - 95
IEEE Solid-States Circuits Magazine - Summer 2022 - 96
IEEE Solid-States Circuits Magazine - Summer 2022 - 97
IEEE Solid-States Circuits Magazine - Summer 2022 - 98
IEEE Solid-States Circuits Magazine - Summer 2022 - 99
IEEE Solid-States Circuits Magazine - Summer 2022 - 100
IEEE Solid-States Circuits Magazine - Summer 2022 - 101
IEEE Solid-States Circuits Magazine - Summer 2022 - 102
IEEE Solid-States Circuits Magazine - Summer 2022 - 103
IEEE Solid-States Circuits Magazine - Summer 2022 - 104
IEEE Solid-States Circuits Magazine - Summer 2022 - 105
IEEE Solid-States Circuits Magazine - Summer 2022 - 106
IEEE Solid-States Circuits Magazine - Summer 2022 - 107
IEEE Solid-States Circuits Magazine - Summer 2022 - 108
IEEE Solid-States Circuits Magazine - Summer 2022 - 109
IEEE Solid-States Circuits Magazine - Summer 2022 - 110
IEEE Solid-States Circuits Magazine - Summer 2022 - 111
IEEE Solid-States Circuits Magazine - Summer 2022 - 112
IEEE Solid-States Circuits Magazine - Summer 2022 - Cover3
IEEE Solid-States Circuits Magazine - Summer 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com