IEEE Robotics & Automation Magazine - June 2021 - 75

The efficient supervision and coordination of a heterogeneous
system mandates a decentralized framework that integrates
high-level task planning, low-level motion planning
and control, and robust real-time sensing of the robot's
dynamic environment. Decentralization in multiagent robotic
systems is of utmost importance because it provides flexibility,
scalability, and fault-tolerance capabilities. In this work, we
present the architecture of the decentralized framework
developed within the context of the European Union project
Co4Robots and its application in a multitasking collaboration
scenario involving various heterogeneous robots and humans.
Common Applications
Multiple robots are commonly used in cooperative applications,
such as exploration, surveillance, service robotics, and
cognitive factories [1]. However, dealing with the collaboration
of heterogeneous multirobot systems is a rather tricky
undertaking due to the different kinematic and sensing capabilities
of each robot. One issue of utmost importance in
coordination of robotic teams is multiagent task planning and
control. Significant efforts have been devoted toward this in
the past decades, resulting in a number of high-complexity
algorithms [2].
A standard classification that arises in multiagent planning
and control is centralized versus decentralized
schemes, depending on whether the assignment of actions
to the agents is performed by a central computer unit or
locally by each agent. Current practice in coordination of
robotic teams is based on offline centralized planning, and
related tasks are almost exclusively fulfilled in a predefined
manner, allowing little room for real-time and coordinated
decentralized actions. Centralized planning schemes with
global and local tasks usually provided satisfactory results
[3]; however, they have been proven to be computationally
expensive. On the other hand, decentralized planning significantly
reduces computational complexity [4]. A rather
important issue in heterogeneous decentralized task planning
is role assignment and task allocation, where each
agent's capabilities diverge depending on its teammate and/
or their mutual state [5].
From the control point of view, multirobot cooperative
object manipulation and transportation have been well studied
in the literature, especially in a centralized framework [6].
Despite its performance, centralized control is less robust since
all units rely on a central system, and its complexity increases
rapidly as the number of participating robots increases. On the
other hand, decentralized control approaches usually depend
on heavy, explicit interrobot communication and global offline
knowledge of the desired task [7]. Nevertheless, in such tasks,
implicit interrobot communication arises naturally as a side
effect of the robot's physical interactions (e.g., the interaction
forces between the object and the robot), which can be easily
acquired by appropriate sensors attached to the robot [8].
However, limited studies have been conducted in cooperative
object manipulation and transportation via heterogeneous
robotic systems [9].
Hence, our work is motivated by the need to have multirobot
decentralized systems, where a significant amount of
information can be implicitly acquired via physical interactions
and processed locally, reducing the need for exhaustive,
explicit interrobot communication.
More specifically,
we present a
complete decentralized
framework consisting
of 1) a set of perceptual
algorithms that enable
cooperating robots to
estimate the state of their
highly dynamic environment,
2) a set of control
schemes appropriate for
the mobility and manipulation
capabilities of the
considered robotic platforms,
3) a systematic
real-time decentralized methodology to accomplish complex
mission specifications given to a team of heterogeneous
robots, and 4) the corresponding systematic integration of
these modalities at both conceptual and software implementation
levels. The efficacy of the overall framework is demonstrated
via a complex scenario, which involves three
heterogeneous robots and humans cooperating in loading
and transportation tasks.
System Components
Our purpose is to develop a decentralized framework that will
be able to support logistic tasks in an automated manner by
efficiently allocating a set of heterogeneous robotic agents as
well as humans that collaborate appropriately according to the
specifications of each task. Hence, we envision the employment
of 1) a dexterous seven-degrees-of-freedom (DoF) static
manipulator able to perform loading and unloading actions
of light and heavy objects, 2) a mobile manipulator to extend
the motion flexibility and reachability of the overall framework,
and 3) a mobile robot for the transportation of objects
across different areas of the workspace, endowed with the
ability to ease the loading and unloading procedures by
Decentralization in
multiagent robotic systems
is of utmost importance
because it provides
flexibility, scalability, and
fault-tolerance capabilities.
Figure 1. Heterogeneous agents cooperating in a multitasking
collaboration scenario.
JUNE 2021 * IEEE ROBOTICS & AUTOMATION MAGAZINE *
75

IEEE Robotics & Automation Magazine - June 2021

Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2021

Contents
IEEE Robotics & Automation Magazine - June 2021 - Cover1
IEEE Robotics & Automation Magazine - June 2021 - Cover2
IEEE Robotics & Automation Magazine - June 2021 - Contents
IEEE Robotics & Automation Magazine - June 2021 - 2
IEEE Robotics & Automation Magazine - June 2021 - 3
IEEE Robotics & Automation Magazine - June 2021 - 4
IEEE Robotics & Automation Magazine - June 2021 - 5
IEEE Robotics & Automation Magazine - June 2021 - 6
IEEE Robotics & Automation Magazine - June 2021 - 7
IEEE Robotics & Automation Magazine - June 2021 - 8
IEEE Robotics & Automation Magazine - June 2021 - 9
IEEE Robotics & Automation Magazine - June 2021 - 10
IEEE Robotics & Automation Magazine - June 2021 - 11
IEEE Robotics & Automation Magazine - June 2021 - 12
IEEE Robotics & Automation Magazine - June 2021 - 13
IEEE Robotics & Automation Magazine - June 2021 - 14
IEEE Robotics & Automation Magazine - June 2021 - 15
IEEE Robotics & Automation Magazine - June 2021 - 16
IEEE Robotics & Automation Magazine - June 2021 - 17
IEEE Robotics & Automation Magazine - June 2021 - 18
IEEE Robotics & Automation Magazine - June 2021 - 19
IEEE Robotics & Automation Magazine - June 2021 - 20
IEEE Robotics & Automation Magazine - June 2021 - 21
IEEE Robotics & Automation Magazine - June 2021 - 22
IEEE Robotics & Automation Magazine - June 2021 - 23
IEEE Robotics & Automation Magazine - June 2021 - 24
IEEE Robotics & Automation Magazine - June 2021 - 25
IEEE Robotics & Automation Magazine - June 2021 - 26
IEEE Robotics & Automation Magazine - June 2021 - 27
IEEE Robotics & Automation Magazine - June 2021 - 28
IEEE Robotics & Automation Magazine - June 2021 - 29
IEEE Robotics & Automation Magazine - June 2021 - 30
IEEE Robotics & Automation Magazine - June 2021 - 31
IEEE Robotics & Automation Magazine - June 2021 - 32
IEEE Robotics & Automation Magazine - June 2021 - 33
IEEE Robotics & Automation Magazine - June 2021 - 34
IEEE Robotics & Automation Magazine - June 2021 - 35
IEEE Robotics & Automation Magazine - June 2021 - 36
IEEE Robotics & Automation Magazine - June 2021 - 37
IEEE Robotics & Automation Magazine - June 2021 - 38
IEEE Robotics & Automation Magazine - June 2021 - 39
IEEE Robotics & Automation Magazine - June 2021 - 40
IEEE Robotics & Automation Magazine - June 2021 - 41
IEEE Robotics & Automation Magazine - June 2021 - 42
IEEE Robotics & Automation Magazine - June 2021 - 43
IEEE Robotics & Automation Magazine - June 2021 - 44
IEEE Robotics & Automation Magazine - June 2021 - 45
IEEE Robotics & Automation Magazine - June 2021 - 46
IEEE Robotics & Automation Magazine - June 2021 - 47
IEEE Robotics & Automation Magazine - June 2021 - 48
IEEE Robotics & Automation Magazine - June 2021 - 49
IEEE Robotics & Automation Magazine - June 2021 - 50
IEEE Robotics & Automation Magazine - June 2021 - 51
IEEE Robotics & Automation Magazine - June 2021 - 52
IEEE Robotics & Automation Magazine - June 2021 - 53
IEEE Robotics & Automation Magazine - June 2021 - 54
IEEE Robotics & Automation Magazine - June 2021 - 55
IEEE Robotics & Automation Magazine - June 2021 - 56
IEEE Robotics & Automation Magazine - June 2021 - 57
IEEE Robotics & Automation Magazine - June 2021 - 58
IEEE Robotics & Automation Magazine - June 2021 - 59
IEEE Robotics & Automation Magazine - June 2021 - 60
IEEE Robotics & Automation Magazine - June 2021 - 61
IEEE Robotics & Automation Magazine - June 2021 - 62
IEEE Robotics & Automation Magazine - June 2021 - 63
IEEE Robotics & Automation Magazine - June 2021 - 64
IEEE Robotics & Automation Magazine - June 2021 - 65
IEEE Robotics & Automation Magazine - June 2021 - 66
IEEE Robotics & Automation Magazine - June 2021 - 67
IEEE Robotics & Automation Magazine - June 2021 - 68
IEEE Robotics & Automation Magazine - June 2021 - 69
IEEE Robotics & Automation Magazine - June 2021 - 70
IEEE Robotics & Automation Magazine - June 2021 - 71
IEEE Robotics & Automation Magazine - June 2021 - 72
IEEE Robotics & Automation Magazine - June 2021 - 73
IEEE Robotics & Automation Magazine - June 2021 - 74
IEEE Robotics & Automation Magazine - June 2021 - 75
IEEE Robotics & Automation Magazine - June 2021 - 76
IEEE Robotics & Automation Magazine - June 2021 - 77
IEEE Robotics & Automation Magazine - June 2021 - 78
IEEE Robotics & Automation Magazine - June 2021 - 79
IEEE Robotics & Automation Magazine - June 2021 - 80
IEEE Robotics & Automation Magazine - June 2021 - 81
IEEE Robotics & Automation Magazine - June 2021 - 82
IEEE Robotics & Automation Magazine - June 2021 - 83
IEEE Robotics & Automation Magazine - June 2021 - 84
IEEE Robotics & Automation Magazine - June 2021 - 85
IEEE Robotics & Automation Magazine - June 2021 - 86
IEEE Robotics & Automation Magazine - June 2021 - 87
IEEE Robotics & Automation Magazine - June 2021 - 88
IEEE Robotics & Automation Magazine - June 2021 - 89
IEEE Robotics & Automation Magazine - June 2021 - 90
IEEE Robotics & Automation Magazine - June 2021 - 91
IEEE Robotics & Automation Magazine - June 2021 - 92
IEEE Robotics & Automation Magazine - June 2021 - 93
IEEE Robotics & Automation Magazine - June 2021 - 94
IEEE Robotics & Automation Magazine - June 2021 - 95
IEEE Robotics & Automation Magazine - June 2021 - 96
IEEE Robotics & Automation Magazine - June 2021 - 97
IEEE Robotics & Automation Magazine - June 2021 - 98
IEEE Robotics & Automation Magazine - June 2021 - 99
IEEE Robotics & Automation Magazine - June 2021 - 100
IEEE Robotics & Automation Magazine - June 2021 - 101
IEEE Robotics & Automation Magazine - June 2021 - 102
IEEE Robotics & Automation Magazine - June 2021 - 103
IEEE Robotics & Automation Magazine - June 2021 - 104
IEEE Robotics & Automation Magazine - June 2021 - 105
IEEE Robotics & Automation Magazine - June 2021 - 106
IEEE Robotics & Automation Magazine - June 2021 - 107
IEEE Robotics & Automation Magazine - June 2021 - 108
IEEE Robotics & Automation Magazine - June 2021 - 109
IEEE Robotics & Automation Magazine - June 2021 - 110
IEEE Robotics & Automation Magazine - June 2021 - 111
IEEE Robotics & Automation Magazine - June 2021 - 112
IEEE Robotics & Automation Magazine - June 2021 - 113
IEEE Robotics & Automation Magazine - June 2021 - 114
IEEE Robotics & Automation Magazine - June 2021 - 115
IEEE Robotics & Automation Magazine - June 2021 - 116
IEEE Robotics & Automation Magazine - June 2021 - 117
IEEE Robotics & Automation Magazine - June 2021 - 118
IEEE Robotics & Automation Magazine - June 2021 - 119
IEEE Robotics & Automation Magazine - June 2021 - 120
IEEE Robotics & Automation Magazine - June 2021 - 121
IEEE Robotics & Automation Magazine - June 2021 - 122
IEEE Robotics & Automation Magazine - June 2021 - 123
IEEE Robotics & Automation Magazine - June 2021 - 124
IEEE Robotics & Automation Magazine - June 2021 - 125
IEEE Robotics & Automation Magazine - June 2021 - 126
IEEE Robotics & Automation Magazine - June 2021 - 127
IEEE Robotics & Automation Magazine - June 2021 - 128
IEEE Robotics & Automation Magazine - June 2021 - 129
IEEE Robotics & Automation Magazine - June 2021 - 130
IEEE Robotics & Automation Magazine - June 2021 - 131
IEEE Robotics & Automation Magazine - June 2021 - 132
IEEE Robotics & Automation Magazine - June 2021 - 133
IEEE Robotics & Automation Magazine - June 2021 - 134
IEEE Robotics & Automation Magazine - June 2021 - 135
IEEE Robotics & Automation Magazine - June 2021 - 136
IEEE Robotics & Automation Magazine - June 2021 - 137
IEEE Robotics & Automation Magazine - June 2021 - 138
IEEE Robotics & Automation Magazine - June 2021 - 139
IEEE Robotics & Automation Magazine - June 2021 - 140
IEEE Robotics & Automation Magazine - June 2021 - Cover3
IEEE Robotics & Automation Magazine - June 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com