IEEE Robotics & Automation Magazine - March 2021 - 110

UI features (potentiometers, buttons, switches, and an LCD
screen) allow the physician to interact with the ventilator and
monitor the status of both the ventilator and the patient, as
illustrated in Figure 5(b).
Control Architecture
The controller is implemented in the form of a finite-state
machine (FSM), illustrated in Figure 5(c). An alarm manager object keeps track of various alarm conditions outside of the loop and reports them to the user through a
combination of a flashing LED, ringing buzzer, and
message displayed on the UI LCD. We also note that
new settings may be programmed while the ventilator is
actively ventilating, without breaking the main loop,
enabling the physician to modify ventilation parameters
during operation based on feedback from the pressuresensing, single-limb circuit. Patient safety was of paramount importance in every design decision of the
VOV, particularly in regards to barotrauma avoidance.
The VOV implements active barotrauma avoidance
by modulating the TV if the inspiratory pressure exceeds
predefined thresholds, as displayed experimentally in

BPM

40
30
20

Desired
Actual

10

I/E Ratio

0
0

1
0.8
0.6
0.4
0.2
0

20

40

60

80 100 120 140 160 180 200
Cycle Number
(a)

Desired
Actual

0

20

40

60

80 100 120 140 160 180 200
Cycle Number

Scaling Parameters

(b)
2
1.5
1
α
β

0.5
0
0

20

40

60

80 100 120 140 160 180 200
Cycle Number
(c)

Figure 7. The end-cycle proportional timing controller for various
BPM and I/E settings: block diagram of the (a) BPM versus
cycle number (commanded and actual), (b) I/E ratio versus
cycle number (commanded and actual), and (c) speed scaling
parameters a and b versus cycle number.

110

*

IEEE ROBOTICS & AUTOMATION MAGAZINE

*

MARCH 2021

Figure 6. This is detailed in the Supplementary File, as
are numerous other control-based and mechanical-based
safety solutions.
End-Cycle Proportional Timing Control
Methodology
Windshield wiper motors run in open loop, so to achieve
accurate respiratory-rate timing, we have implemented an
end-cycle proportional timing controller. We sense the
position of the motor at the two most important points in
the respiratory cycle (full inspiration and full expiration)
with a pair of limit switches, dead-reckon between these
two points, and adjust speeds on the next cycle as necessary to meet these respiratory timing requirements, based
on the error between the desired and actual inspiration/
expiration times. The specific hardware implementation of
the end-cycle proportional timing methodology is available in the Supplementary File. This proportional timing
update capability is demonstrated experimentally in Figure 7, where the BPM and I/E ratio were increased every
50 cycles (12 BPM at 1:4 I/E, 20 BPM at 1:3 I/E, 30 BPM
at 1:2 I/E, and 40 BPM at 1:1 I/E) while the VOV was
actively ventilating a test lung apparatus with a built-in
compliance of 20 mL/hPa. As can be observed, the VOV is
quick to converge to the new settings (within 30% of the
desired setting after a single breath cycle) and with negligible steady-state error.
In Vivo and In Vitro Testing
In preparation for the FDA EUA submission, the VOV
was experimentally validated using a combination of in
vitro validation in a calibrated mechanical test lung and
live animal testing using an anesthetized swine model.
In Vivo Swine Study
Two live animal studies were performed in which the
VOV provided continuous ventilation to an anesthetized
swine for four hours. In the first study, as mentioned in
the " VOV Development Process " section, there was
insufficient gas exchange due to the length of the ET tubing. For a more detailed discussion of this, see " Insights
from First In Vitro Swine Study " in the Supplementary
File. In the second swine study, we corrected the problem
with a pressure-sensing, single-limb circuit [Figure 8(a)].
The swine was ventilated continuously for four hours
(with average settings of 20 BPM and an I/E ratio of 1:2)
as per our approved IACUC protocol. Throughout the
course of the second experiment, the swine remained
hemodynamically normal, with adequate oxygenation,
ventilation, and a normal pH. Subsequent histology
results revealed well-preserved alveolar structural integrity with no evidence of barotrauma or atelectasis [Figure 8(b) and (c)] [25].
It is likely that humidification would be useful in
the future long-term (e.g., weeks) use of this ventilator
with human patients. We successfully accomplished



IEEE Robotics & Automation Magazine - March 2021

Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - March 2021

Contents
IEEE Robotics & Automation Magazine - March 2021 - Cover1
IEEE Robotics & Automation Magazine - March 2021 - Cover2
IEEE Robotics & Automation Magazine - March 2021 - Contents
IEEE Robotics & Automation Magazine - March 2021 - 2
IEEE Robotics & Automation Magazine - March 2021 - 3
IEEE Robotics & Automation Magazine - March 2021 - 4
IEEE Robotics & Automation Magazine - March 2021 - 5
IEEE Robotics & Automation Magazine - March 2021 - 6
IEEE Robotics & Automation Magazine - March 2021 - 7
IEEE Robotics & Automation Magazine - March 2021 - 8
IEEE Robotics & Automation Magazine - March 2021 - 9
IEEE Robotics & Automation Magazine - March 2021 - 10
IEEE Robotics & Automation Magazine - March 2021 - 11
IEEE Robotics & Automation Magazine - March 2021 - 12
IEEE Robotics & Automation Magazine - March 2021 - 13
IEEE Robotics & Automation Magazine - March 2021 - 14
IEEE Robotics & Automation Magazine - March 2021 - 15
IEEE Robotics & Automation Magazine - March 2021 - 16
IEEE Robotics & Automation Magazine - March 2021 - 17
IEEE Robotics & Automation Magazine - March 2021 - 18
IEEE Robotics & Automation Magazine - March 2021 - 19
IEEE Robotics & Automation Magazine - March 2021 - 20
IEEE Robotics & Automation Magazine - March 2021 - 21
IEEE Robotics & Automation Magazine - March 2021 - 22
IEEE Robotics & Automation Magazine - March 2021 - 23
IEEE Robotics & Automation Magazine - March 2021 - 24
IEEE Robotics & Automation Magazine - March 2021 - 25
IEEE Robotics & Automation Magazine - March 2021 - 26
IEEE Robotics & Automation Magazine - March 2021 - 27
IEEE Robotics & Automation Magazine - March 2021 - 28
IEEE Robotics & Automation Magazine - March 2021 - 29
IEEE Robotics & Automation Magazine - March 2021 - 30
IEEE Robotics & Automation Magazine - March 2021 - 31
IEEE Robotics & Automation Magazine - March 2021 - 32
IEEE Robotics & Automation Magazine - March 2021 - 33
IEEE Robotics & Automation Magazine - March 2021 - 34
IEEE Robotics & Automation Magazine - March 2021 - 35
IEEE Robotics & Automation Magazine - March 2021 - 36
IEEE Robotics & Automation Magazine - March 2021 - 37
IEEE Robotics & Automation Magazine - March 2021 - 38
IEEE Robotics & Automation Magazine - March 2021 - 39
IEEE Robotics & Automation Magazine - March 2021 - 40
IEEE Robotics & Automation Magazine - March 2021 - 41
IEEE Robotics & Automation Magazine - March 2021 - 42
IEEE Robotics & Automation Magazine - March 2021 - 43
IEEE Robotics & Automation Magazine - March 2021 - 44
IEEE Robotics & Automation Magazine - March 2021 - 45
IEEE Robotics & Automation Magazine - March 2021 - 46
IEEE Robotics & Automation Magazine - March 2021 - 47
IEEE Robotics & Automation Magazine - March 2021 - 48
IEEE Robotics & Automation Magazine - March 2021 - 49
IEEE Robotics & Automation Magazine - March 2021 - 50
IEEE Robotics & Automation Magazine - March 2021 - 51
IEEE Robotics & Automation Magazine - March 2021 - 52
IEEE Robotics & Automation Magazine - March 2021 - 53
IEEE Robotics & Automation Magazine - March 2021 - 54
IEEE Robotics & Automation Magazine - March 2021 - 55
IEEE Robotics & Automation Magazine - March 2021 - 56
IEEE Robotics & Automation Magazine - March 2021 - 57
IEEE Robotics & Automation Magazine - March 2021 - 58
IEEE Robotics & Automation Magazine - March 2021 - 59
IEEE Robotics & Automation Magazine - March 2021 - 60
IEEE Robotics & Automation Magazine - March 2021 - 61
IEEE Robotics & Automation Magazine - March 2021 - 62
IEEE Robotics & Automation Magazine - March 2021 - 63
IEEE Robotics & Automation Magazine - March 2021 - 64
IEEE Robotics & Automation Magazine - March 2021 - 65
IEEE Robotics & Automation Magazine - March 2021 - 66
IEEE Robotics & Automation Magazine - March 2021 - 67
IEEE Robotics & Automation Magazine - March 2021 - 68
IEEE Robotics & Automation Magazine - March 2021 - 69
IEEE Robotics & Automation Magazine - March 2021 - 70
IEEE Robotics & Automation Magazine - March 2021 - 71
IEEE Robotics & Automation Magazine - March 2021 - 72
IEEE Robotics & Automation Magazine - March 2021 - 73
IEEE Robotics & Automation Magazine - March 2021 - 74
IEEE Robotics & Automation Magazine - March 2021 - 75
IEEE Robotics & Automation Magazine - March 2021 - 76
IEEE Robotics & Automation Magazine - March 2021 - 77
IEEE Robotics & Automation Magazine - March 2021 - 78
IEEE Robotics & Automation Magazine - March 2021 - 79
IEEE Robotics & Automation Magazine - March 2021 - 80
IEEE Robotics & Automation Magazine - March 2021 - 81
IEEE Robotics & Automation Magazine - March 2021 - 82
IEEE Robotics & Automation Magazine - March 2021 - 83
IEEE Robotics & Automation Magazine - March 2021 - 84
IEEE Robotics & Automation Magazine - March 2021 - 85
IEEE Robotics & Automation Magazine - March 2021 - 86
IEEE Robotics & Automation Magazine - March 2021 - 87
IEEE Robotics & Automation Magazine - March 2021 - 88
IEEE Robotics & Automation Magazine - March 2021 - 89
IEEE Robotics & Automation Magazine - March 2021 - 90
IEEE Robotics & Automation Magazine - March 2021 - 91
IEEE Robotics & Automation Magazine - March 2021 - 92
IEEE Robotics & Automation Magazine - March 2021 - 93
IEEE Robotics & Automation Magazine - March 2021 - 94
IEEE Robotics & Automation Magazine - March 2021 - 95
IEEE Robotics & Automation Magazine - March 2021 - 96
IEEE Robotics & Automation Magazine - March 2021 - 97
IEEE Robotics & Automation Magazine - March 2021 - 98
IEEE Robotics & Automation Magazine - March 2021 - 99
IEEE Robotics & Automation Magazine - March 2021 - 100
IEEE Robotics & Automation Magazine - March 2021 - 101
IEEE Robotics & Automation Magazine - March 2021 - 102
IEEE Robotics & Automation Magazine - March 2021 - 103
IEEE Robotics & Automation Magazine - March 2021 - 104
IEEE Robotics & Automation Magazine - March 2021 - 105
IEEE Robotics & Automation Magazine - March 2021 - 106
IEEE Robotics & Automation Magazine - March 2021 - 107
IEEE Robotics & Automation Magazine - March 2021 - 108
IEEE Robotics & Automation Magazine - March 2021 - 109
IEEE Robotics & Automation Magazine - March 2021 - 110
IEEE Robotics & Automation Magazine - March 2021 - 111
IEEE Robotics & Automation Magazine - March 2021 - 112
IEEE Robotics & Automation Magazine - March 2021 - 113
IEEE Robotics & Automation Magazine - March 2021 - 114
IEEE Robotics & Automation Magazine - March 2021 - 115
IEEE Robotics & Automation Magazine - March 2021 - 116
IEEE Robotics & Automation Magazine - March 2021 - 117
IEEE Robotics & Automation Magazine - March 2021 - 118
IEEE Robotics & Automation Magazine - March 2021 - 119
IEEE Robotics & Automation Magazine - March 2021 - 120
IEEE Robotics & Automation Magazine - March 2021 - 121
IEEE Robotics & Automation Magazine - March 2021 - 122
IEEE Robotics & Automation Magazine - March 2021 - 123
IEEE Robotics & Automation Magazine - March 2021 - 124
IEEE Robotics & Automation Magazine - March 2021 - 125
IEEE Robotics & Automation Magazine - March 2021 - 126
IEEE Robotics & Automation Magazine - March 2021 - 127
IEEE Robotics & Automation Magazine - March 2021 - 128
IEEE Robotics & Automation Magazine - March 2021 - Cover3
IEEE Robotics & Automation Magazine - March 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com