IEEE Robotics & Automation Magazine - March 2021 - 84

first two months. Our robots have been helping provide
badly needed supportive care to patients isolated in ICUs.
The Design and Development Process
The main design requirements for the robot were simplicity
and high usability (i.e., easy operation) by health-care workers, with the capability to be operated, handled, and transported by a single person.
Moreover, the robot needed to be designed, develPudu is a social robot
oped, and built at a low
cost, in a development
specifically designed to
time frame of just a few
weeks. In addition, as it
provide communication
was not possible to have
advance access to either
and telepresence services
accurate maps of the hospitals where the robot
to COVID-19 patients.
would operate or accurate
location of patients' beds,
the alternative of having
autonomous operation was discarded, and it was decided to
design a robot that operates in an assistive teleoperation
mode [11] based on off-the-shelf devices.

(a)

(b)

Figure 2. Pudu's first visit to the hospital. (a) Pudu entering an
elevator and (b) moving in a corridor.

Table 1. Pudu's technical specifications.

84

*

Height

1,300 mm

Footprint

Circular, with a diameter of 456 mm

Weight

10 Kg

Mobile platform

Kobuki [13]

Main processing unit

Raspberry Pi 4 Model B 4 GB [14]

RGB-D camera

Intel RealSense D435i

Servocontroller

Arduino Nano

Servomotor

MG996R Servo Motor

Tablet

Samsung Galaxy Tab A10.1

Joystick

Xbox 360 Joystick

IEEE ROBOTICS & AUTOMATION MAGAZINE

*

MARCH 2021

The design and development process implemented was
essential for having a final version of the robot ready to be used
in a hospital with all of the required permissions in just eight
weeks. This process consisted of the following four stages.
1) Stage 1-first design: The first version of the robot was the
result of addressing the first requirements of the health
team. This development process was carried out in our
fabrication laboratory, where it took four weeks. This
rapid design was possible only because of the experience
of the students' team in the RoboCup@Home competitions [12], where they acquired experience in designing
and building robots.
2) Stage 2-basic validation in the hospital: A first visit to the
hospital with the working prototype was carried out (see
Figure 2). During this visit, the way in which the robot
interacted with the hospital's infrastructure (corridors, lifts,
care rooms, beds, and so on) was analyzed. In addition, the
hospital's Department of Healthcare and Associated Infections (HAI) examined the robot and defined the requirements for its future operation in the hospital. We then took
it back to the laboratory, and a second version of the robot
was ready after one week.
3) Stage 3-first interaction with patients: A visit with the
second version of the robot was carried out. During this
visit, the robot was operated by a psychointensivist, and it
interacted with patients. The experience was very successful, as the psychointensivist and patients were satisfied and
pleased with the encounter, but two other requirements
arose: the need to control the tilt angle of the camera for
proper interaction with patients lying or sitting in different
positions and the need for microphones with noise cancellation to filter out the noise generated by equipment used
in ICUs. We again took the robot back to the laboratory,
and after two weeks, had our third prototype.
4) Stage 4-final validation: A final validation was carried out
on a third visit. During this visit, the robot was inspected,
and we received final approval from both the HAI department and the ethics committee to use the robot inside the
hospital. As a consequence of this visit, the hospital created and approved a formal protocol for the use of Pudu
with patients (see the " Deployment and Early Results " section). In addition, the visit was used to calibrate-based
on real interactions of the robot with health-care professionals and hospital furniture-the final position and tilt
angle of the red, green, blue, depth (RGB-D) camera,
which acquires the range data required for assistive teleoperation. After that, adjustments were made, and the final
version of the Pudu robot was ready to be used.
Pudu-A Social Robot for Patient
Communication and Telepresence
General Description: Hardware
and Software Components
Pudu is a social robot specifically designed to provide communication and telepresence services to COVID-19 patients.



IEEE Robotics & Automation Magazine - March 2021

Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - March 2021

Contents
IEEE Robotics & Automation Magazine - March 2021 - Cover1
IEEE Robotics & Automation Magazine - March 2021 - Cover2
IEEE Robotics & Automation Magazine - March 2021 - Contents
IEEE Robotics & Automation Magazine - March 2021 - 2
IEEE Robotics & Automation Magazine - March 2021 - 3
IEEE Robotics & Automation Magazine - March 2021 - 4
IEEE Robotics & Automation Magazine - March 2021 - 5
IEEE Robotics & Automation Magazine - March 2021 - 6
IEEE Robotics & Automation Magazine - March 2021 - 7
IEEE Robotics & Automation Magazine - March 2021 - 8
IEEE Robotics & Automation Magazine - March 2021 - 9
IEEE Robotics & Automation Magazine - March 2021 - 10
IEEE Robotics & Automation Magazine - March 2021 - 11
IEEE Robotics & Automation Magazine - March 2021 - 12
IEEE Robotics & Automation Magazine - March 2021 - 13
IEEE Robotics & Automation Magazine - March 2021 - 14
IEEE Robotics & Automation Magazine - March 2021 - 15
IEEE Robotics & Automation Magazine - March 2021 - 16
IEEE Robotics & Automation Magazine - March 2021 - 17
IEEE Robotics & Automation Magazine - March 2021 - 18
IEEE Robotics & Automation Magazine - March 2021 - 19
IEEE Robotics & Automation Magazine - March 2021 - 20
IEEE Robotics & Automation Magazine - March 2021 - 21
IEEE Robotics & Automation Magazine - March 2021 - 22
IEEE Robotics & Automation Magazine - March 2021 - 23
IEEE Robotics & Automation Magazine - March 2021 - 24
IEEE Robotics & Automation Magazine - March 2021 - 25
IEEE Robotics & Automation Magazine - March 2021 - 26
IEEE Robotics & Automation Magazine - March 2021 - 27
IEEE Robotics & Automation Magazine - March 2021 - 28
IEEE Robotics & Automation Magazine - March 2021 - 29
IEEE Robotics & Automation Magazine - March 2021 - 30
IEEE Robotics & Automation Magazine - March 2021 - 31
IEEE Robotics & Automation Magazine - March 2021 - 32
IEEE Robotics & Automation Magazine - March 2021 - 33
IEEE Robotics & Automation Magazine - March 2021 - 34
IEEE Robotics & Automation Magazine - March 2021 - 35
IEEE Robotics & Automation Magazine - March 2021 - 36
IEEE Robotics & Automation Magazine - March 2021 - 37
IEEE Robotics & Automation Magazine - March 2021 - 38
IEEE Robotics & Automation Magazine - March 2021 - 39
IEEE Robotics & Automation Magazine - March 2021 - 40
IEEE Robotics & Automation Magazine - March 2021 - 41
IEEE Robotics & Automation Magazine - March 2021 - 42
IEEE Robotics & Automation Magazine - March 2021 - 43
IEEE Robotics & Automation Magazine - March 2021 - 44
IEEE Robotics & Automation Magazine - March 2021 - 45
IEEE Robotics & Automation Magazine - March 2021 - 46
IEEE Robotics & Automation Magazine - March 2021 - 47
IEEE Robotics & Automation Magazine - March 2021 - 48
IEEE Robotics & Automation Magazine - March 2021 - 49
IEEE Robotics & Automation Magazine - March 2021 - 50
IEEE Robotics & Automation Magazine - March 2021 - 51
IEEE Robotics & Automation Magazine - March 2021 - 52
IEEE Robotics & Automation Magazine - March 2021 - 53
IEEE Robotics & Automation Magazine - March 2021 - 54
IEEE Robotics & Automation Magazine - March 2021 - 55
IEEE Robotics & Automation Magazine - March 2021 - 56
IEEE Robotics & Automation Magazine - March 2021 - 57
IEEE Robotics & Automation Magazine - March 2021 - 58
IEEE Robotics & Automation Magazine - March 2021 - 59
IEEE Robotics & Automation Magazine - March 2021 - 60
IEEE Robotics & Automation Magazine - March 2021 - 61
IEEE Robotics & Automation Magazine - March 2021 - 62
IEEE Robotics & Automation Magazine - March 2021 - 63
IEEE Robotics & Automation Magazine - March 2021 - 64
IEEE Robotics & Automation Magazine - March 2021 - 65
IEEE Robotics & Automation Magazine - March 2021 - 66
IEEE Robotics & Automation Magazine - March 2021 - 67
IEEE Robotics & Automation Magazine - March 2021 - 68
IEEE Robotics & Automation Magazine - March 2021 - 69
IEEE Robotics & Automation Magazine - March 2021 - 70
IEEE Robotics & Automation Magazine - March 2021 - 71
IEEE Robotics & Automation Magazine - March 2021 - 72
IEEE Robotics & Automation Magazine - March 2021 - 73
IEEE Robotics & Automation Magazine - March 2021 - 74
IEEE Robotics & Automation Magazine - March 2021 - 75
IEEE Robotics & Automation Magazine - March 2021 - 76
IEEE Robotics & Automation Magazine - March 2021 - 77
IEEE Robotics & Automation Magazine - March 2021 - 78
IEEE Robotics & Automation Magazine - March 2021 - 79
IEEE Robotics & Automation Magazine - March 2021 - 80
IEEE Robotics & Automation Magazine - March 2021 - 81
IEEE Robotics & Automation Magazine - March 2021 - 82
IEEE Robotics & Automation Magazine - March 2021 - 83
IEEE Robotics & Automation Magazine - March 2021 - 84
IEEE Robotics & Automation Magazine - March 2021 - 85
IEEE Robotics & Automation Magazine - March 2021 - 86
IEEE Robotics & Automation Magazine - March 2021 - 87
IEEE Robotics & Automation Magazine - March 2021 - 88
IEEE Robotics & Automation Magazine - March 2021 - 89
IEEE Robotics & Automation Magazine - March 2021 - 90
IEEE Robotics & Automation Magazine - March 2021 - 91
IEEE Robotics & Automation Magazine - March 2021 - 92
IEEE Robotics & Automation Magazine - March 2021 - 93
IEEE Robotics & Automation Magazine - March 2021 - 94
IEEE Robotics & Automation Magazine - March 2021 - 95
IEEE Robotics & Automation Magazine - March 2021 - 96
IEEE Robotics & Automation Magazine - March 2021 - 97
IEEE Robotics & Automation Magazine - March 2021 - 98
IEEE Robotics & Automation Magazine - March 2021 - 99
IEEE Robotics & Automation Magazine - March 2021 - 100
IEEE Robotics & Automation Magazine - March 2021 - 101
IEEE Robotics & Automation Magazine - March 2021 - 102
IEEE Robotics & Automation Magazine - March 2021 - 103
IEEE Robotics & Automation Magazine - March 2021 - 104
IEEE Robotics & Automation Magazine - March 2021 - 105
IEEE Robotics & Automation Magazine - March 2021 - 106
IEEE Robotics & Automation Magazine - March 2021 - 107
IEEE Robotics & Automation Magazine - March 2021 - 108
IEEE Robotics & Automation Magazine - March 2021 - 109
IEEE Robotics & Automation Magazine - March 2021 - 110
IEEE Robotics & Automation Magazine - March 2021 - 111
IEEE Robotics & Automation Magazine - March 2021 - 112
IEEE Robotics & Automation Magazine - March 2021 - 113
IEEE Robotics & Automation Magazine - March 2021 - 114
IEEE Robotics & Automation Magazine - March 2021 - 115
IEEE Robotics & Automation Magazine - March 2021 - 116
IEEE Robotics & Automation Magazine - March 2021 - 117
IEEE Robotics & Automation Magazine - March 2021 - 118
IEEE Robotics & Automation Magazine - March 2021 - 119
IEEE Robotics & Automation Magazine - March 2021 - 120
IEEE Robotics & Automation Magazine - March 2021 - 121
IEEE Robotics & Automation Magazine - March 2021 - 122
IEEE Robotics & Automation Magazine - March 2021 - 123
IEEE Robotics & Automation Magazine - March 2021 - 124
IEEE Robotics & Automation Magazine - March 2021 - 125
IEEE Robotics & Automation Magazine - March 2021 - 126
IEEE Robotics & Automation Magazine - March 2021 - 127
IEEE Robotics & Automation Magazine - March 2021 - 128
IEEE Robotics & Automation Magazine - March 2021 - Cover3
IEEE Robotics & Automation Magazine - March 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com