IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 37

could span tens of thousands of
square kilometers over both land
The actual object
Missile-Defense Scenario
and water. For example, on 8 May
location scenarios
The missile-defense scenario focus2014, a Malaysian Boeing 777es on the application of digital tech200ER jet, traveling from Kuala
for which we adapted
nology to nonkinetic techniques
Lumpur, Malaysia, to Beijing,
and applied the
(e.g., cyber and electronic warfare)
China, disappeared in flight. A
to enable negation opportunities
massive search was conducted by
AMADS were those of
beyond the traditional kinetic-based
multiple countries, using their
finding ships in open
approaches. These nonkinetic techbest ISR technologies. However,
water and unique
niques enable threat negation at all
the jet was not found, and heavily
phases of the missile life cycle. Figinvested cou ntr ies cou ld not
cars on land.
ure 3 provides a notional missileagree on primary search locations
defense operations view that
[17]. The actual object location
depicts cybertechniques delivered
scenarios for which we adapted
from a variety of platforms to negate threats throughout
and applied the AMADS were those of finding ships in
their entire life cycle. It also shows other nonkinetic negaopen water and unique cars on land. To  demonstrate
tion techniques, such as electronic warfare and radio frethis, we used a collection of 940 images from six diverse
quency interruption, along with essential operation centers
databases to create a blend of the Overhead Imagery
that must be integrated and coordinated into the broader
Research Data Set (OIRDS), IKONOS GeoEye, Digitalballistic missile-defense systems and be battle-managed to
Globe, Google Images, and Google Maps, examples of
optimize both kinetic and nonkinetic capabilities.
which are shown in Figure 4 [17]-[21]. Many of the images
obtained from these databases were small, 200 × 200Remote-Object-Location Scenario
pixel images, while others were large, 14,000 × 16,000This scenario focuses on the identification and ge pixel national imagery transmission format images. To
olocation of objects lost within a geographic area that
support this AMADS adaptation, we applied an advanced
AMADS Scenarios

Country A

Country B
Missile-Defense
Command and Control
Integration Cell

Midcourse
Phase
Electronic Warfare
HPM
Missile
Boost
Phase
Deployment
Phase

Terminal
Phase

Decoys

ISR
Fusion
Center
Rail Gun

Deployment
Phase

Fielding
Phase

Integrated
Ops C2

Manufacturing
Phase

Manufacturing
Phase
Figure 3. A notional layered asymmetric missile defense. HPM: high-power microwave; Ops C2: Operations

Command and Control.

Ja nua r y 2 01 8

IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE

37



Table of Contents for the Digital Edition of IEEE Systems, Man, and Cybernetics Magazine - January 2018

Contents
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - Cover1
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - Cover2
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - Contents
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 2
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 3
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 4
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 5
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 6
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 7
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 8
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 9
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 10
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 11
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 12
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 13
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 14
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 15
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 16
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 17
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 18
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 19
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 20
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 21
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 22
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 23
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 24
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 25
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 26
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 27
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 28
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 29
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 30
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 31
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 32
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 33
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 34
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 35
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 36
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 37
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 38
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 39
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 40
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 41
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 42
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 43
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 44
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 45
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 46
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 47
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 48
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 49
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 50
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 51
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - 52
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - Cover3
IEEE Systems, Man, and Cybernetics Magazine - January 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/smc_202110
https://www.nxtbook.com/nxtbooks/ieee/smc_202107
https://www.nxtbook.com/nxtbooks/ieee/smc_202104
https://www.nxtbook.com/nxtbooks/ieee/smc_202101
https://www.nxtbook.com/nxtbooks/ieee/smc_202010
https://www.nxtbook.com/nxtbooks/ieee/smc_202007
https://www.nxtbook.com/nxtbooks/ieee/smc_202004
https://www.nxtbook.com/nxtbooks/ieee/smc_202001
https://www.nxtbook.com/nxtbooks/ieee/smc_201910
https://www.nxtbook.com/nxtbooks/ieee/smc_201907
https://www.nxtbook.com/nxtbooks/ieee/smc_201904
https://www.nxtbook.com/nxtbooks/ieee/smc_201901
https://www.nxtbook.com/nxtbooks/ieee/smc_201810
https://www.nxtbook.com/nxtbooks/ieee/smc_201807
https://www.nxtbook.com/nxtbooks/ieee/smc_201804
https://www.nxtbook.com/nxtbooks/ieee/smc_201801
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1017
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0717
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0417
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0117
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1016
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0716
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0416
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0116
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1015
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0715
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0415
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0115
https://www.nxtbookmedia.com