IEEE Systems, Man and Cybernetics Magazine - April 2021 - 53

performed using eight vehicles moving in one direction
under the aforementioned attacks. The results indicate that
the approach improves tracking performance. As another
platoon example, optimal control and attack detection
schemes are introduced in [222] for a group of ACVs. FigureĀ 17 presents the ACVs and sensors used for the automation. Note that various sensors, consisting of roadside
units, radars, cameras, and lidar, are applied. An optimal
controller is designed to augment traffic networks and
reduce the risk of an accidents by using vehicles' speeds
and their distances from one another. The robustness of
the controller against physical attacks, such as a Jeep
hijacking case [223], is also investigated. Two scenarios
are proposed. The first applies residual-based isolation via
a KF-based method and optimizes a threshold for sensors
that contain prior state information. The second utilizes
the posteriori prediction and Mahalanobis distance data to
isolate an attacked sensor. Simulation results indicate
improved accuracy compared to a KF-based scheme.
Medical Systems
Medical systems benefit from connected smart Internet of
Things (IoT) devices and utilize big medical data. The integration of smart devices and remote networks, such as
cloud computing, enables patients to receive better treatment and to make their medical insurance information and
health records available [224]. Figure 18 displays a possible
medical CPS. There are many attractive features of IoT
medical devices and data communication through networks, but the downside is that interconnected systems
are vulnerable to cyberattacks. For instance, hackers may
wish to commit insurance fraud and, worse yet, launch
attacks against patient themselves [226], [227].
A model-based cyberattack detection approach is
developed in [228] for Raven II surgical robots. Figure 19
displays the robot's str ucture. A n attack ca n be
launched through packet corruptions via control software to USB input-output boards. The study's authors
devise a method using Runge-Kutta and explicit Euler
methods for estimation. Simulations indicate that their
technique reaches 90% attack detection accuracy, on
average. A data-driven approach is developed in [229]
for medical CPSs. PCA uses sensor and actuator measurement data to identify attacks. Tests against zeroday attacks demonstrate that the technique is efficient
in terms of its runtime, computation overhead, and
detection rate. An attack detection strategy is developed in [230] for digital microfluidic biochips (DMFBs),
clinical monitoring devices that reduce sample rates
for, and add automation to, assay analysis. A cyberattack is often organized against DMFBs by manipulating
assay outcomes. In the study, a DoS attack is initiated
by tampering with assay operation and actuating
sequences. A graph-based method is used to detect the
attack. Tests indicate that an attack can be easily
implemented but hard to identify.
	

Roadside Sensor

Camera and Lidar
Radar

Figure 17. ACVs and automation sensors [222].

Patients

Data
Collection

Data
Storage

Surgeries in
Other Hospitals

Figure 18. A possible medical CPS [225].

Instrument

dc Motor Arm

Instrument

Arm

dc Motor

Figure 19. The Raven II surgical robot [228].

Conclusion and Future Work
Conclusion
This article reviewed the state of the art in the research
and development of CPSs and control-oriented cyberattack detectors. Basic CPS definitions, concepts, and characteristics were explained, and the CPS structure was
discussed. Various attack models were described, and different design methodologies for attack detection were presented. Research studies of certain prominent CPSs were
briefly reviewed.
Ap ri l 2021

IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE	

53



IEEE Systems, Man and Cybernetics Magazine - April 2021

Table of Contents for the Digital Edition of IEEE Systems, Man and Cybernetics Magazine - April 2021

contents
IEEE Systems, Man and Cybernetics Magazine - April 2021 - Cover1
IEEE Systems, Man and Cybernetics Magazine - April 2021 - Cover2
IEEE Systems, Man and Cybernetics Magazine - April 2021 - contents
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 2
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 3
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 4
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 5
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 6
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 7
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 8
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 9
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 10
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 11
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 12
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 13
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 14
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 15
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 16
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 17
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 18
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 19
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 20
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 21
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 22
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 23
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 24
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 25
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 26
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 27
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 28
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 29
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 30
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 31
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 32
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 33
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 34
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 35
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 36
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 37
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 38
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 39
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 40
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 41
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 42
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 43
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 44
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 45
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 46
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 47
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 48
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 49
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 50
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 51
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 52
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 53
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 54
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 55
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 56
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 57
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 58
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 59
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 60
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 61
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 62
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 63
IEEE Systems, Man and Cybernetics Magazine - April 2021 - 64
IEEE Systems, Man and Cybernetics Magazine - April 2021 - Cover3
IEEE Systems, Man and Cybernetics Magazine - April 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/smc_202301
https://www.nxtbook.com/nxtbooks/ieee/smc_202210
https://www.nxtbook.com/nxtbooks/ieee/smc_202207
https://www.nxtbook.com/nxtbooks/ieee/smc_202204
https://www.nxtbook.com/nxtbooks/ieee/smc_202201
https://www.nxtbook.com/nxtbooks/ieee/smc_202110
https://www.nxtbook.com/nxtbooks/ieee/smc_202107
https://www.nxtbook.com/nxtbooks/ieee/smc_202104
https://www.nxtbook.com/nxtbooks/ieee/smc_202101
https://www.nxtbook.com/nxtbooks/ieee/smc_202010
https://www.nxtbook.com/nxtbooks/ieee/smc_202007
https://www.nxtbook.com/nxtbooks/ieee/smc_202004
https://www.nxtbook.com/nxtbooks/ieee/smc_202001
https://www.nxtbook.com/nxtbooks/ieee/smc_201910
https://www.nxtbook.com/nxtbooks/ieee/smc_201907
https://www.nxtbook.com/nxtbooks/ieee/smc_201904
https://www.nxtbook.com/nxtbooks/ieee/smc_201901
https://www.nxtbook.com/nxtbooks/ieee/smc_201810
https://www.nxtbook.com/nxtbooks/ieee/smc_201807
https://www.nxtbook.com/nxtbooks/ieee/smc_201804
https://www.nxtbook.com/nxtbooks/ieee/smc_201801
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1017
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0717
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0417
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0117
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1016
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0716
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0416
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0116
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1015
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0715
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0415
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0115
https://www.nxtbookmedia.com