IEEE Electrification Magazine - June 2020 - 30

Installed Power
FCs in Marine Application (kW)

600,000
400,000

-

Vdc

+

Idc

500,000

200,000

dc

100,000

dc

0

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018

Grid Interface

30,0000

-

VFC

+

IFC

Year
Figure 3. The installed power FCs in marine applications between

Water

FC Stack

FC Stack

Water

Heat

2000 and 2018.

MFC
FO2

Expansion

Evaporation

Catalyst

Heat

Compressed
Hydrogen

Liquid Hydrogen

Liquid Organic
Hydrogen/Ammonia

Metal Hydrate

Air

H2 Recovery
H2 Storage

H2

IFC-ref

Air
Compressor

PO2

Air

PT

PT
PH2
FH2

MFC

Auxiliaries

Humidifier
I E E E E l e c t r i f i cati o n M agaz ine / J UN E 2020

Figure 2. A schematic of a typical FC and the auxiliaries for electric propulsion. PT: pressure transmitter.

Cooling Fans

30

alternative H 2- based energy carriers, such as nitrogenbased electrofuels, such as ammonia, which can be produced from H 2 . The advantage of fuels, which are liquid at
atmospheric temperature and pressure, is the easier integration of storage tanks on a vessel. Hence, this saves both
weight and space compared to fuels in gas form.
According to the Norwegian classification society (DNV
GL), in its 2019 Energy Transition Outlook (in the Maritime
Forecast to 2050), ammonia ( NH 3) is currently the most
promising candidate as a hydrogen carrier onboard.
Ammonia can be found in liquid form at a higher temperature than H 2; therefore, storage and distribution are easier for ammonia than for hydrogen in the long term. Since
ammonia can be produced from natural gas as a low-carbon fuel, and Norway has a large amount of natural gas,
ammonia can be the future fuel for passenger ferries
crossing the fiords to meet the demand for reduced emissions. The main shortcoming of ammonia is its very high
autoignition temperature and high heat of vaporization.
However, so far, there is no available engine for ammonia,
and none of the marine engines on the market currently
is able to burn ammonia. Hence, using ammonia as a fuel
requires some modifications to engines as well as to fuel
storage and supply systems.

FCs for Marine Applications
Several types of FCs with distinct characteristics exist that
are distinguished by the type of electrolyte and fuel used
and the operating temperature. Some types of FCs draw
the most attention for commercialization; these are presented in Table 1.
Several types of FCs can be used in maritime applications based on the specific operation and available infrastructure; PEMFCs is the most common, followed by molten
carbonate FCs (MCFCs) and direct methanol FCs (DMFCs).
Among those FCs using hydrogen, PEMFCs normally operate in the low-temperature range of 50-85 °C, which allows
for safer operation. On the other hand, high-temperature
FCs, mainly MCFCs and solid oxide FCs (SOFCs), normally
provide higher efficiency compared to the low-temperature



IEEE Electrification Magazine - June 2020

Table of Contents for the Digital Edition of IEEE Electrification Magazine - June 2020

Contents
IEEE Electrification Magazine - June 2020 - Cover1
IEEE Electrification Magazine - June 2020 - Cover2
IEEE Electrification Magazine - June 2020 - Contents
IEEE Electrification Magazine - June 2020 - 2
IEEE Electrification Magazine - June 2020 - 3
IEEE Electrification Magazine - June 2020 - 4
IEEE Electrification Magazine - June 2020 - 5
IEEE Electrification Magazine - June 2020 - 6
IEEE Electrification Magazine - June 2020 - 7
IEEE Electrification Magazine - June 2020 - 8
IEEE Electrification Magazine - June 2020 - 9
IEEE Electrification Magazine - June 2020 - 10
IEEE Electrification Magazine - June 2020 - 11
IEEE Electrification Magazine - June 2020 - 12
IEEE Electrification Magazine - June 2020 - 13
IEEE Electrification Magazine - June 2020 - 14
IEEE Electrification Magazine - June 2020 - 15
IEEE Electrification Magazine - June 2020 - 16
IEEE Electrification Magazine - June 2020 - 17
IEEE Electrification Magazine - June 2020 - 18
IEEE Electrification Magazine - June 2020 - 19
IEEE Electrification Magazine - June 2020 - 20
IEEE Electrification Magazine - June 2020 - 21
IEEE Electrification Magazine - June 2020 - 22
IEEE Electrification Magazine - June 2020 - 23
IEEE Electrification Magazine - June 2020 - 24
IEEE Electrification Magazine - June 2020 - 25
IEEE Electrification Magazine - June 2020 - 26
IEEE Electrification Magazine - June 2020 - 27
IEEE Electrification Magazine - June 2020 - 28
IEEE Electrification Magazine - June 2020 - 29
IEEE Electrification Magazine - June 2020 - 30
IEEE Electrification Magazine - June 2020 - 31
IEEE Electrification Magazine - June 2020 - 32
IEEE Electrification Magazine - June 2020 - 33
IEEE Electrification Magazine - June 2020 - 34
IEEE Electrification Magazine - June 2020 - 35
IEEE Electrification Magazine - June 2020 - 36
IEEE Electrification Magazine - June 2020 - 37
IEEE Electrification Magazine - June 2020 - 38
IEEE Electrification Magazine - June 2020 - 39
IEEE Electrification Magazine - June 2020 - 40
IEEE Electrification Magazine - June 2020 - 41
IEEE Electrification Magazine - June 2020 - 42
IEEE Electrification Magazine - June 2020 - 43
IEEE Electrification Magazine - June 2020 - 44
IEEE Electrification Magazine - June 2020 - 45
IEEE Electrification Magazine - June 2020 - 46
IEEE Electrification Magazine - June 2020 - 47
IEEE Electrification Magazine - June 2020 - 48
IEEE Electrification Magazine - June 2020 - 49
IEEE Electrification Magazine - June 2020 - 50
IEEE Electrification Magazine - June 2020 - 51
IEEE Electrification Magazine - June 2020 - 52
IEEE Electrification Magazine - June 2020 - 53
IEEE Electrification Magazine - June 2020 - 54
IEEE Electrification Magazine - June 2020 - 55
IEEE Electrification Magazine - June 2020 - 56
IEEE Electrification Magazine - June 2020 - 57
IEEE Electrification Magazine - June 2020 - 58
IEEE Electrification Magazine - June 2020 - 59
IEEE Electrification Magazine - June 2020 - 60
IEEE Electrification Magazine - June 2020 - 61
IEEE Electrification Magazine - June 2020 - 62
IEEE Electrification Magazine - June 2020 - 63
IEEE Electrification Magazine - June 2020 - 64
IEEE Electrification Magazine - June 2020 - Cover3
IEEE Electrification Magazine - June 2020 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com