IEEE Electrification Magazine - March 2014 - 50

distribution management system (aDms) that could
accommodate a large fleet of microgrids includes:
xx
integration of supply-side and demand-side resources,
including microgrids, into real-time and day-ahead
operations
xx
automation and optimization of dispatch of resources.
schneider's aDms and Power control system includes
applications for:
xx
economic dispatch
xx
load forecast
xx
renewables generation forecast
xx
automatic generation control
xx
interchange transaction scheduler
xx
unit commitment
xx
fast load shedding
xx
planning and operation of distribution grid.
the integration of a high number of microgrids into a
distribution system presents numerous technical challenges (figure 4) including:
xx
Protection and stability of distribution circuits: as everyone
in the electric industry knows, distribution systems have
been designed as one-way power flow systems. when
traditional PV solar systems are installed, they are
required to automatically disconnect from the distribution grid when a fault is detected, and then they must
come back online from a black start authorized by the
distribution operator. in contrast, with their built-in safety technology, certs microgrids do not present themselves as energized hazards to utility work crews. with
fast, intelligent switches, they automatically disconnect
into island mode and then automatically resynchronize

when grid stability is detected. while they are in island
mode, certs microgrids automatically balance their
internal generation and loads and maintain stability
within their circuits.
xx
Variability: Variability is a major problem with traditional
solar and wind systems. in contrast, certs microgrids
are "good citizens" of the grid and always balance Der
variability internally so that they do not present themselves as a problem to the distribution operator.
xx
Overvoltage: a problem that microgrids will present is
overvoltage on local circuits. currently, under nem, utility
companies have limited customers from sending energy
back into the system of no more than 105% of their load.
under a fleet microgrid system, the basic concept is to
generate 100% of local load and to be able to generate
excess energy that can be economically dispatched by
the distribution operator. some microgrids may have the
capacity to export significant amounts of energy.
xx
Monitoring and control of each source on each microgrid: to
determine the available capacity of the microgrid fleet,
the distribution operator needs to know the capacity,
status and forecasted production of each source so that
planning and operation of distribution meets supply
requirements and conventional power flow constraints.
this secondary control requires a secure communications network that can process a large number of control
points in real time.
xx
Dispatchability of microgrids: the key to the economic
and power supply roles of revenue microgrids is that a
portion of their predictable capacity can be dispatched
reliably by the distribution operator (figure 5). the

Integrated ADMS Business Objectives
Energy Storage
and Electric Vehicles

16

Generation

2

8

Renewable Energy Resources
(Solar and Wind)

11

6

3

14

12
Demand Response and
Load Control (ADR)

13
Energy Purchases
and Sales

1

6

10

9
16

15
7

7

Centralized
Control Center

8

8

Distributed Generation,
PV, and Microgrids

10
9

9
5

4
16

* Integrate Supply-Side and Demand-Side Resources into Real-Time and Day-Ahead Operations
* Automate and Optimize Dispatch of Resources
Figure 5. Integrating microgrids into distribution operations. (Image courtesy of Schneider Electric.)

50

I E E E E l e c t r i f i c ati o n M agaz ine / MARCH 2014



Table of Contents for the Digital Edition of IEEE Electrification Magazine - March 2014

IEEE Electrification Magazine - March 2014 - Cover1
IEEE Electrification Magazine - March 2014 - Cover2
IEEE Electrification Magazine - March 2014 - 1
IEEE Electrification Magazine - March 2014 - 2
IEEE Electrification Magazine - March 2014 - 3
IEEE Electrification Magazine - March 2014 - 4
IEEE Electrification Magazine - March 2014 - 5
IEEE Electrification Magazine - March 2014 - 6
IEEE Electrification Magazine - March 2014 - 7
IEEE Electrification Magazine - March 2014 - 8
IEEE Electrification Magazine - March 2014 - 9
IEEE Electrification Magazine - March 2014 - 10
IEEE Electrification Magazine - March 2014 - 11
IEEE Electrification Magazine - March 2014 - 12
IEEE Electrification Magazine - March 2014 - 13
IEEE Electrification Magazine - March 2014 - 14
IEEE Electrification Magazine - March 2014 - 15
IEEE Electrification Magazine - March 2014 - 16
IEEE Electrification Magazine - March 2014 - 17
IEEE Electrification Magazine - March 2014 - 18
IEEE Electrification Magazine - March 2014 - 19
IEEE Electrification Magazine - March 2014 - 20
IEEE Electrification Magazine - March 2014 - 21
IEEE Electrification Magazine - March 2014 - 22
IEEE Electrification Magazine - March 2014 - 23
IEEE Electrification Magazine - March 2014 - 24
IEEE Electrification Magazine - March 2014 - 25
IEEE Electrification Magazine - March 2014 - 26
IEEE Electrification Magazine - March 2014 - 27
IEEE Electrification Magazine - March 2014 - 28
IEEE Electrification Magazine - March 2014 - 29
IEEE Electrification Magazine - March 2014 - 30
IEEE Electrification Magazine - March 2014 - 31
IEEE Electrification Magazine - March 2014 - 32
IEEE Electrification Magazine - March 2014 - 33
IEEE Electrification Magazine - March 2014 - 34
IEEE Electrification Magazine - March 2014 - 35
IEEE Electrification Magazine - March 2014 - 36
IEEE Electrification Magazine - March 2014 - 37
IEEE Electrification Magazine - March 2014 - 38
IEEE Electrification Magazine - March 2014 - 39
IEEE Electrification Magazine - March 2014 - 40
IEEE Electrification Magazine - March 2014 - 41
IEEE Electrification Magazine - March 2014 - 42
IEEE Electrification Magazine - March 2014 - 43
IEEE Electrification Magazine - March 2014 - 44
IEEE Electrification Magazine - March 2014 - 45
IEEE Electrification Magazine - March 2014 - 46
IEEE Electrification Magazine - March 2014 - 47
IEEE Electrification Magazine - March 2014 - 48
IEEE Electrification Magazine - March 2014 - 49
IEEE Electrification Magazine - March 2014 - 50
IEEE Electrification Magazine - March 2014 - 51
IEEE Electrification Magazine - March 2014 - 52
IEEE Electrification Magazine - March 2014 - 53
IEEE Electrification Magazine - March 2014 - 54
IEEE Electrification Magazine - March 2014 - 55
IEEE Electrification Magazine - March 2014 - 56
IEEE Electrification Magazine - March 2014 - 57
IEEE Electrification Magazine - March 2014 - 58
IEEE Electrification Magazine - March 2014 - 59
IEEE Electrification Magazine - March 2014 - 60
IEEE Electrification Magazine - March 2014 - 61
IEEE Electrification Magazine - March 2014 - 62
IEEE Electrification Magazine - March 2014 - 63
IEEE Electrification Magazine - March 2014 - 64
IEEE Electrification Magazine - March 2014 - 65
IEEE Electrification Magazine - March 2014 - 66
IEEE Electrification Magazine - March 2014 - 67
IEEE Electrification Magazine - March 2014 - 68
IEEE Electrification Magazine - March 2014 - 69
IEEE Electrification Magazine - March 2014 - 70
IEEE Electrification Magazine - March 2014 - 71
IEEE Electrification Magazine - March 2014 - 72
IEEE Electrification Magazine - March 2014 - 73
IEEE Electrification Magazine - March 2014 - 74
IEEE Electrification Magazine - March 2014 - 75
IEEE Electrification Magazine - March 2014 - 76
IEEE Electrification Magazine - March 2014 - 77
IEEE Electrification Magazine - March 2014 - 78
IEEE Electrification Magazine - March 2014 - 79
IEEE Electrification Magazine - March 2014 - 80
IEEE Electrification Magazine - March 2014 - 81
IEEE Electrification Magazine - March 2014 - 82
IEEE Electrification Magazine - March 2014 - 83
IEEE Electrification Magazine - March 2014 - 84
IEEE Electrification Magazine - March 2014 - 85
IEEE Electrification Magazine - March 2014 - 86
IEEE Electrification Magazine - March 2014 - 87
IEEE Electrification Magazine - March 2014 - 88
IEEE Electrification Magazine - March 2014 - 89
IEEE Electrification Magazine - March 2014 - 90
IEEE Electrification Magazine - March 2014 - 91
IEEE Electrification Magazine - March 2014 - 92
IEEE Electrification Magazine - March 2014 - 93
IEEE Electrification Magazine - March 2014 - 94
IEEE Electrification Magazine - March 2014 - 95
IEEE Electrification Magazine - March 2014 - 96
IEEE Electrification Magazine - March 2014 - 97
IEEE Electrification Magazine - March 2014 - 98
IEEE Electrification Magazine - March 2014 - 99
IEEE Electrification Magazine - March 2014 - 100
IEEE Electrification Magazine - March 2014 - 101
IEEE Electrification Magazine - March 2014 - 102
IEEE Electrification Magazine - March 2014 - 103
IEEE Electrification Magazine - March 2014 - 104
IEEE Electrification Magazine - March 2014 - Cover3
IEEE Electrification Magazine - March 2014 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com