IEEE Electrification Magazine - March 2017 - 49

access to electroactive sites. This film creation occurs
on both the cathode and the anode, and their growth,
composition, and correlation with performance are
critically dependent on material properties as well
as  operating environment and interaction with
the electrolyte.
xx
Electrical isolation. Active sites in the electrode
become isolated due to mechanical degradation of the
electrode structure.
xx
Li plating on the anode. Li plating in principle occurs
at the graphite anode when its potential is at or
below the Li electrode potential. As described in the
"Batteries for BEVs" section, this can happen when
the battery's charge rate is higher than the insertion
rate/diffusion of Li into the graphite's layered

must be given to both calendar- and cycle-durability in the
design of batteries for automotive applications.
Battery failure is typically manifested by the loss of
energy (loss of available Li) and of power and can be attributed to the following major factors.
xx
Degradation of the cathode. The cathode comprises
the cathode-active material such as NMC, which is
the initial and sole source of cyclable Li in the cell,
conductive carbon, and binder. Degradation of the
cathode will encompass degradation of the active
material such as stress-induced cracking due to
cycling, side reactions with electrolyte, and loss of
accessible Li due to electrode fracture.
xx
Generation of passivation film on the electrodes.
Passivation film consumes available Li and impedes

TaBLe 2. USaBc 12-V battery targets.
End-of-Life Characteristics

Units

Target

Discharge pulse, 1s

kW

Max discharge current, 0.5 s

A

Cold cranking power at −30 °C (three 4.5-s
pulses, 10-s rests between pulses at min SOC)

kW

6 kW for 0.5 s followed by 4 kW for 4 s

Min voltage under cold crank

Vdc

8.0

Available energy (750-W accessory load power)

Wh

360

Peak recharge rate, 10 s

kW

2.2

Sustained recharge rate

W

750

Cycle life, every 10% life RPT with cold crank
at min SOC

Engine starts/mi

Calendar life at 30 °C, 45 °C if UH

Years

Minimum round trip energy efficiency

%

95

Maximum allowable self-discharge rate

Wh/dav

2

Peak operating voltage, 10 s

Vdc

15.0

Sustained operating voltage-max

Vdc

14.6

Minimum operating voltage under autostart

Vdc

Operating temperature range [available energy to
allow 6-kW (1 s) pulse]

°C

UH: −30 to +75; NUH: −30 to +52

30-52 °C

Wh

UH: 360 (to 75 °C); NUH: 360

0 °C

Wh

180

−10 °C

Wh

108

6
900

450 k/l50 k
UH: 15 at 45 °C; NUH: 15 at 30 °C

10.5

−20 °C

Wh

54

−30 °C

Wh

36

Survival temperature range (24 h)

°C

Maximum system weight

kg

Maximum system volume

L

Maximum system selling price (at 25 Qk units/year)

US$

UH: −46 to +100; NUH: −46 to +66
10
7
UH: US$220; NUH: US$180

UH: under hood; NUH: not under hood.

IEEE Electrific ation Magazine / march 2 0 1 7

49



Table of Contents for the Digital Edition of IEEE Electrification Magazine - March 2017

IEEE Electrification Magazine - March 2017 - Cover1
IEEE Electrification Magazine - March 2017 - Cover2
IEEE Electrification Magazine - March 2017 - 1
IEEE Electrification Magazine - March 2017 - 2
IEEE Electrification Magazine - March 2017 - 3
IEEE Electrification Magazine - March 2017 - 4
IEEE Electrification Magazine - March 2017 - 5
IEEE Electrification Magazine - March 2017 - 6
IEEE Electrification Magazine - March 2017 - 7
IEEE Electrification Magazine - March 2017 - 8
IEEE Electrification Magazine - March 2017 - 9
IEEE Electrification Magazine - March 2017 - 10
IEEE Electrification Magazine - March 2017 - 11
IEEE Electrification Magazine - March 2017 - 12
IEEE Electrification Magazine - March 2017 - 13
IEEE Electrification Magazine - March 2017 - 14
IEEE Electrification Magazine - March 2017 - 15
IEEE Electrification Magazine - March 2017 - 16
IEEE Electrification Magazine - March 2017 - 17
IEEE Electrification Magazine - March 2017 - 18
IEEE Electrification Magazine - March 2017 - 19
IEEE Electrification Magazine - March 2017 - 20
IEEE Electrification Magazine - March 2017 - 21
IEEE Electrification Magazine - March 2017 - 22
IEEE Electrification Magazine - March 2017 - 23
IEEE Electrification Magazine - March 2017 - 24
IEEE Electrification Magazine - March 2017 - 25
IEEE Electrification Magazine - March 2017 - 26
IEEE Electrification Magazine - March 2017 - 27
IEEE Electrification Magazine - March 2017 - 28
IEEE Electrification Magazine - March 2017 - 29
IEEE Electrification Magazine - March 2017 - 30
IEEE Electrification Magazine - March 2017 - 31
IEEE Electrification Magazine - March 2017 - 32
IEEE Electrification Magazine - March 2017 - 33
IEEE Electrification Magazine - March 2017 - 34
IEEE Electrification Magazine - March 2017 - 35
IEEE Electrification Magazine - March 2017 - 36
IEEE Electrification Magazine - March 2017 - 37
IEEE Electrification Magazine - March 2017 - 38
IEEE Electrification Magazine - March 2017 - 39
IEEE Electrification Magazine - March 2017 - 40
IEEE Electrification Magazine - March 2017 - 41
IEEE Electrification Magazine - March 2017 - 42
IEEE Electrification Magazine - March 2017 - 43
IEEE Electrification Magazine - March 2017 - 44
IEEE Electrification Magazine - March 2017 - 45
IEEE Electrification Magazine - March 2017 - 46
IEEE Electrification Magazine - March 2017 - 47
IEEE Electrification Magazine - March 2017 - 48
IEEE Electrification Magazine - March 2017 - 49
IEEE Electrification Magazine - March 2017 - 50
IEEE Electrification Magazine - March 2017 - 51
IEEE Electrification Magazine - March 2017 - 52
IEEE Electrification Magazine - March 2017 - 53
IEEE Electrification Magazine - March 2017 - 54
IEEE Electrification Magazine - March 2017 - 55
IEEE Electrification Magazine - March 2017 - 56
IEEE Electrification Magazine - March 2017 - 57
IEEE Electrification Magazine - March 2017 - 58
IEEE Electrification Magazine - March 2017 - 59
IEEE Electrification Magazine - March 2017 - 60
IEEE Electrification Magazine - March 2017 - 61
IEEE Electrification Magazine - March 2017 - 62
IEEE Electrification Magazine - March 2017 - 63
IEEE Electrification Magazine - March 2017 - 64
IEEE Electrification Magazine - March 2017 - 65
IEEE Electrification Magazine - March 2017 - 66
IEEE Electrification Magazine - March 2017 - 67
IEEE Electrification Magazine - March 2017 - 68
IEEE Electrification Magazine - March 2017 - 69
IEEE Electrification Magazine - March 2017 - 70
IEEE Electrification Magazine - March 2017 - 71
IEEE Electrification Magazine - March 2017 - 72
IEEE Electrification Magazine - March 2017 - 73
IEEE Electrification Magazine - March 2017 - 74
IEEE Electrification Magazine - March 2017 - 75
IEEE Electrification Magazine - March 2017 - 76
IEEE Electrification Magazine - March 2017 - 77
IEEE Electrification Magazine - March 2017 - 78
IEEE Electrification Magazine - March 2017 - 79
IEEE Electrification Magazine - March 2017 - 80
IEEE Electrification Magazine - March 2017 - Cover3
IEEE Electrification Magazine - March 2017 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com