IEEE Power & Energy Magazine - January/February 2016 - 37

requirements of the business processes such as day-ahead congestion forecast, other operational planning exchanges defined in the
european network codes, and long-term planning data exchanges.

the United states a decade or two ago. as a consequence, these
standards are quite mature, resulting in many successful implementations worldwide. two examples of this follow.

Usage of CIM to Organize
and Structure Shared Data

Use of CIM Standards in the United States
(Examples from ERCOT and PJM)

ciM standards have been applied in many different areas to
organize and structure shared data, such as for system integration of transmission and distribution operations and planning systems, power system network model management
and exchange needed for grid reliability system studies and
forecasts, and market operations. one of the major strengths
of the ciM is its system architecture that organizes its standards into a three-layer framework.
✔ Layer 1: a normalized information model of utility
operations defined using Unified Modeling language
(UMl) that defines the semantics for interoperability.
this model is managed and maintained on the sparx
enterprise architect platform.
✔ Layer 2: a set of profiles for specific system interactions/interfaces that are based on a subset of the information model in layer 1. these profiles define the
syntax for information exchange, such as schemas that
define extensible Markup language (XMl)-based
message payloads or files but could also include schemas for data extraction from databases.
✔ Layer 3: implementation technologies for the serialization of data exchanged between systems, applications, and devices that are also a part of the syntax
definition to enable system interoperability.
it is this layered architecture that facilitates the reuse of a
single common semantic model (i.e., the ciM) for the multitude of profiles that have been already defined as well as for
future profiles. similarly, since the profiles are a type of platform-independent model, mappings to future new exchange
technologies are also enabled.
another key strength of the ciM architecture is the methodology/work flow process defined to go from a business use
case to interoperable data sharing over a variety of transport
mechanisms. this methodology was developed over many
years of experience with a multitude of real-world applications at utilities and energy companies all over the world. a
related benefit is the ability to customize and extend the ciM
standards as needed to meet unique data exchange requirements at a specific utility enterprise.

ciM standards have been used as the foundation for the integration of operational systems as part of the electricity reliability council of texas (ercot) and the pJM ac2 projects.
ercot's ciM based network Model Management system
has been operational since 2010. it uses iec 61970 standards
for the exchange of network models between participating
transmission organizations and ercot, as well as between
different software systems within the rto. More details on
this are provided in other articles in this issue of the magazine.
the pJM ac2 project integrates several systems sourced
from different vendors and legacy systems to support common rto workflows: day-ahead market operations, realtime market operations, reliability operations, and billing
and settlement. an information model manager is used to
produce and maintain power system network models in
iec 61970-452 formats for use by the siemens energy Management system for reliability operations and by the alstom
Market Management system for market operations.
the iec ciM was also used as the semantic model in the
siemens/pJM shared architecture. the shared architecture
provides a secure standards-based integration platform with
standard services and payloads that are used by software systems provided by different vendors and developed in house
by pJM. the system has been in continuous operation since
2011. the use of a standards-based service oriented architecture enables faster innovation in the area of the smart grid.

Where CIM Standards
Have Been Applied
CIM for Network Models
the use of the ciM for power system network model exchange is
generally based on the iec 61970 series of standards that define
the necessary ciM classes and attributes needed for different
exchanges. these standards have been improved substantially
since the first implementations of iec 61970 were launched in
january/february 2016

Long-Term Planning in Europe

as mentioned earlier, the entso-e has an obligation to
deliver ten-year network development plans. this, along
with the other drivers to have efficient data exchanges for
the power system analyses, lead to the adoption of a ciM for
data exchanges related to long-term planning studies. at that
time, in 2009, the entso-e ciM data exchange was based
on iec ciM release 14 standards. a major effort was undertaken to package available information, prepare the profile
(the subset of ciM classes used in the data exchange), test
the standard, and use it in real data exchanges.
table 1 illustrates the first improvements in the processes
when using the ciM-based data exchange, taking into
account the maturity of the ciM at that time and the experience of the vendors and tso experts in using ciM-based
solutions. the example is on the preparation of a one-term
planning model for the largest synchronous zone in europe,
the regional group continental europe (rg ce).
With the use of the ciM, the quality of the data sets
increased, and tsos were able to exchange more detailed
models to conduct studies. there is a growing expectation that the quality and performance of these exchanges
ieee power & energy magazine

37



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - January/February 2016

IEEE Power & Energy Magazine - January/February 2016 - Cover1
IEEE Power & Energy Magazine - January/February 2016 - Cover2
IEEE Power & Energy Magazine - January/February 2016 - 1
IEEE Power & Energy Magazine - January/February 2016 - 2
IEEE Power & Energy Magazine - January/February 2016 - 3
IEEE Power & Energy Magazine - January/February 2016 - 4
IEEE Power & Energy Magazine - January/February 2016 - 5
IEEE Power & Energy Magazine - January/February 2016 - 6
IEEE Power & Energy Magazine - January/February 2016 - 7
IEEE Power & Energy Magazine - January/February 2016 - 8
IEEE Power & Energy Magazine - January/February 2016 - 9
IEEE Power & Energy Magazine - January/February 2016 - 10
IEEE Power & Energy Magazine - January/February 2016 - 11
IEEE Power & Energy Magazine - January/February 2016 - 12
IEEE Power & Energy Magazine - January/February 2016 - 13
IEEE Power & Energy Magazine - January/February 2016 - 14
IEEE Power & Energy Magazine - January/February 2016 - 15
IEEE Power & Energy Magazine - January/February 2016 - 16
IEEE Power & Energy Magazine - January/February 2016 - 17
IEEE Power & Energy Magazine - January/February 2016 - 18
IEEE Power & Energy Magazine - January/February 2016 - 19
IEEE Power & Energy Magazine - January/February 2016 - 20
IEEE Power & Energy Magazine - January/February 2016 - 21
IEEE Power & Energy Magazine - January/February 2016 - 22
IEEE Power & Energy Magazine - January/February 2016 - 23
IEEE Power & Energy Magazine - January/February 2016 - 24
IEEE Power & Energy Magazine - January/February 2016 - 25
IEEE Power & Energy Magazine - January/February 2016 - 26
IEEE Power & Energy Magazine - January/February 2016 - 27
IEEE Power & Energy Magazine - January/February 2016 - 28
IEEE Power & Energy Magazine - January/February 2016 - 29
IEEE Power & Energy Magazine - January/February 2016 - 30
IEEE Power & Energy Magazine - January/February 2016 - 31
IEEE Power & Energy Magazine - January/February 2016 - 32
IEEE Power & Energy Magazine - January/February 2016 - 33
IEEE Power & Energy Magazine - January/February 2016 - 34
IEEE Power & Energy Magazine - January/February 2016 - 35
IEEE Power & Energy Magazine - January/February 2016 - 36
IEEE Power & Energy Magazine - January/February 2016 - 37
IEEE Power & Energy Magazine - January/February 2016 - 38
IEEE Power & Energy Magazine - January/February 2016 - 39
IEEE Power & Energy Magazine - January/February 2016 - 40
IEEE Power & Energy Magazine - January/February 2016 - 41
IEEE Power & Energy Magazine - January/February 2016 - 42
IEEE Power & Energy Magazine - January/February 2016 - 43
IEEE Power & Energy Magazine - January/February 2016 - 44
IEEE Power & Energy Magazine - January/February 2016 - 45
IEEE Power & Energy Magazine - January/February 2016 - 46
IEEE Power & Energy Magazine - January/February 2016 - 47
IEEE Power & Energy Magazine - January/February 2016 - 48
IEEE Power & Energy Magazine - January/February 2016 - 49
IEEE Power & Energy Magazine - January/February 2016 - 50
IEEE Power & Energy Magazine - January/February 2016 - 51
IEEE Power & Energy Magazine - January/February 2016 - 52
IEEE Power & Energy Magazine - January/February 2016 - 53
IEEE Power & Energy Magazine - January/February 2016 - 54
IEEE Power & Energy Magazine - January/February 2016 - 55
IEEE Power & Energy Magazine - January/February 2016 - 56
IEEE Power & Energy Magazine - January/February 2016 - 57
IEEE Power & Energy Magazine - January/February 2016 - 58
IEEE Power & Energy Magazine - January/February 2016 - 59
IEEE Power & Energy Magazine - January/February 2016 - 60
IEEE Power & Energy Magazine - January/February 2016 - 61
IEEE Power & Energy Magazine - January/February 2016 - 62
IEEE Power & Energy Magazine - January/February 2016 - 63
IEEE Power & Energy Magazine - January/February 2016 - 64
IEEE Power & Energy Magazine - January/February 2016 - 65
IEEE Power & Energy Magazine - January/February 2016 - 66
IEEE Power & Energy Magazine - January/February 2016 - 67
IEEE Power & Energy Magazine - January/February 2016 - 68
IEEE Power & Energy Magazine - January/February 2016 - 69
IEEE Power & Energy Magazine - January/February 2016 - 70
IEEE Power & Energy Magazine - January/February 2016 - 71
IEEE Power & Energy Magazine - January/February 2016 - 72
IEEE Power & Energy Magazine - January/February 2016 - 73
IEEE Power & Energy Magazine - January/February 2016 - 74
IEEE Power & Energy Magazine - January/February 2016 - 75
IEEE Power & Energy Magazine - January/February 2016 - 76
IEEE Power & Energy Magazine - January/February 2016 - 77
IEEE Power & Energy Magazine - January/February 2016 - 78
IEEE Power & Energy Magazine - January/February 2016 - 79
IEEE Power & Energy Magazine - January/February 2016 - 80
IEEE Power & Energy Magazine - January/February 2016 - 81
IEEE Power & Energy Magazine - January/February 2016 - 82
IEEE Power & Energy Magazine - January/February 2016 - 83
IEEE Power & Energy Magazine - January/February 2016 - 84
IEEE Power & Energy Magazine - January/February 2016 - 85
IEEE Power & Energy Magazine - January/February 2016 - 86
IEEE Power & Energy Magazine - January/February 2016 - 87
IEEE Power & Energy Magazine - January/February 2016 - 88
IEEE Power & Energy Magazine - January/February 2016 - 89
IEEE Power & Energy Magazine - January/February 2016 - 90
IEEE Power & Energy Magazine - January/February 2016 - 91
IEEE Power & Energy Magazine - January/February 2016 - 92
IEEE Power & Energy Magazine - January/February 2016 - 93
IEEE Power & Energy Magazine - January/February 2016 - 94
IEEE Power & Energy Magazine - January/February 2016 - 95
IEEE Power & Energy Magazine - January/February 2016 - 96
IEEE Power & Energy Magazine - January/February 2016 - 97
IEEE Power & Energy Magazine - January/February 2016 - 98
IEEE Power & Energy Magazine - January/February 2016 - 99
IEEE Power & Energy Magazine - January/February 2016 - 100
IEEE Power & Energy Magazine - January/February 2016 - 101
IEEE Power & Energy Magazine - January/February 2016 - 102
IEEE Power & Energy Magazine - January/February 2016 - 103
IEEE Power & Energy Magazine - January/February 2016 - 104
IEEE Power & Energy Magazine - January/February 2016 - 105
IEEE Power & Energy Magazine - January/February 2016 - 106
IEEE Power & Energy Magazine - January/February 2016 - 107
IEEE Power & Energy Magazine - January/February 2016 - 108
IEEE Power & Energy Magazine - January/February 2016 - 109
IEEE Power & Energy Magazine - January/February 2016 - 110
IEEE Power & Energy Magazine - January/February 2016 - 111
IEEE Power & Energy Magazine - January/February 2016 - 112
IEEE Power & Energy Magazine - January/February 2016 - 113
IEEE Power & Energy Magazine - January/February 2016 - 114
IEEE Power & Energy Magazine - January/February 2016 - 115
IEEE Power & Energy Magazine - January/February 2016 - 116
IEEE Power & Energy Magazine - January/February 2016 - 117
IEEE Power & Energy Magazine - January/February 2016 - 118
IEEE Power & Energy Magazine - January/February 2016 - 119
IEEE Power & Energy Magazine - January/February 2016 - 120
IEEE Power & Energy Magazine - January/February 2016 - 121
IEEE Power & Energy Magazine - January/February 2016 - 122
IEEE Power & Energy Magazine - January/February 2016 - 123
IEEE Power & Energy Magazine - January/February 2016 - 124
IEEE Power & Energy Magazine - January/February 2016 - 125
IEEE Power & Energy Magazine - January/February 2016 - 126
IEEE Power & Energy Magazine - January/February 2016 - 127
IEEE Power & Energy Magazine - January/February 2016 - 128
IEEE Power & Energy Magazine - January/February 2016 - Cover3
IEEE Power & Energy Magazine - January/February 2016 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com