IEEE Power & Energy Magazine - January/February 2016 - 57

Comprehensive multilateral adoption of the CIM, such
as was accomplished at ERCOT and by ENTSO-E in Europe,
is where the largest payoff occurs.
these agreements, tsos cooperated in a variety of procedures
for system security, capacity calculation, and outage planning.
since 2007, however, a number of regional security cooperation initiatives have been launched as a response to a
large system disturbance in 2006.
due to the increased importance of coordinated business
processes for capacity calculations, outage planning, and grid
security calculation, the need for common grid models (cgMs)
and for other merged grid scenarios has been defined. understanding this, the eNtso-e system operations committee in
april 2012 assigned its regional group central europe subgroup on Network Models and Forecast tools to "suggest a
procedure and responsibilities for delivering and updating the
common grid Models with their importance for operations and
capacity calculation." subsequently, a task force was established
for the preparation of a technical specification.
in 2013, after carefully assessing the available european
and international standards for their fitness to support the
identified business requirements, eNtso-e approved the
common grid Model exchange standard, which specifies
european network analysis procedures layered on the iec
tc57 ciM international standards for network modeling.
the design eNtso-e will use is illustrated in Figure 6. the
left side shows that individual tsos (41 within eNtso-e) will
prepare their individual ciM-based grid models for the required
time horizons, in which they incorporate future projects,
planned outages, load forecast, generation schedules (based on
market models or on actual market results), seasonal limits, and
applicable set points. after passing a centralized quality gate,
the net positions and flows on high-voltage dc interconnectors
are matched to target values, resulting from either market clearing (day-ahead and intraday) or from an interchange-matching
algorithm that was developed as part of the project.
the next step is assembling the submitted model parts
and creating a power-flow solution for the entire pan-european grid for each required point in time. the information
that is exchanged for this cgM is expressed as ciM sv and
tp model parts, which refer to the ciM eQ models already
available on the european operational planning data
environment (a system eNtso-e is developing to realize
the exchanges needed for the business processes discussed
earlier). the solved system states can be used to initialize a
power-flow tool to the state of any cross-section of the european power systems, enabling regional studies, examples of
which are listed on the right in Figure 6.

january/february 2016

the modular design of the processes enables the european
tsos to satisfy business needs from network planning (long-term
processes analyzing competing projects) to operational planning,
while minimizing the overhead in data exchange. without ciMbased exchange profiles, this would not be feasible for a constellation of 41 tsos covering five different synchronous areas.

Conclusion
the development of ciM standards for network analysis is
continuing in working group 13, but it has reached the point
where the cost/benefit case for adoption is compelling. the
ciM can reduce cost, it can speed up complex processes, it
can reduce the potential for errors, and it can free valuable
engineering time to do analysis rather than data management.
comprehensive multilateral adoption of the ciM, such as
was accomplished at ercot and by eNtso-e in europe, is
where the largest payoff occurs. of course, this requires collaboration among many parties and so can introduce political
as well as technical challenges. epri, however, has also shown
in its work how a utility may benefit from unilateral adoption of
the ciM, concentrating on unifying the various case-building
activities within the utility's operations and planning responsibilities. this latter, of course, becomes a stepping stone toward
multilateral adoption, which is easier as more individual participants in the grid have already adopted the ciM.

For Further Reading
Using the Common Information Model for Network Analysis Data Management: A CIM Primer Series Guide, epri,
palo alto, ca, 2014.
operational network codes and market guidelines as
a result of the 3rd energy package of the european union.
[online]. available: http://networkcodes.entsoe.eu/
Network Model Manager Technical Market Requirements: The Transmission Perspective, epri, palo alto,
ca, 2014.

Biographies
Jay Britton is with britton consulting, seattle, washington.
Pat Brown is with the electric power research institute, palo alto, california.
John Moseley is with the electric reliability council of
texas, taylor.
MiloŇ° Bunda is with bunda beheer, arnhem, the Netherlands.
p&e

ieee power & energy magazine

57


http://networkcodes.entsoe.eu/

Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - January/February 2016

IEEE Power & Energy Magazine - January/February 2016 - Cover1
IEEE Power & Energy Magazine - January/February 2016 - Cover2
IEEE Power & Energy Magazine - January/February 2016 - 1
IEEE Power & Energy Magazine - January/February 2016 - 2
IEEE Power & Energy Magazine - January/February 2016 - 3
IEEE Power & Energy Magazine - January/February 2016 - 4
IEEE Power & Energy Magazine - January/February 2016 - 5
IEEE Power & Energy Magazine - January/February 2016 - 6
IEEE Power & Energy Magazine - January/February 2016 - 7
IEEE Power & Energy Magazine - January/February 2016 - 8
IEEE Power & Energy Magazine - January/February 2016 - 9
IEEE Power & Energy Magazine - January/February 2016 - 10
IEEE Power & Energy Magazine - January/February 2016 - 11
IEEE Power & Energy Magazine - January/February 2016 - 12
IEEE Power & Energy Magazine - January/February 2016 - 13
IEEE Power & Energy Magazine - January/February 2016 - 14
IEEE Power & Energy Magazine - January/February 2016 - 15
IEEE Power & Energy Magazine - January/February 2016 - 16
IEEE Power & Energy Magazine - January/February 2016 - 17
IEEE Power & Energy Magazine - January/February 2016 - 18
IEEE Power & Energy Magazine - January/February 2016 - 19
IEEE Power & Energy Magazine - January/February 2016 - 20
IEEE Power & Energy Magazine - January/February 2016 - 21
IEEE Power & Energy Magazine - January/February 2016 - 22
IEEE Power & Energy Magazine - January/February 2016 - 23
IEEE Power & Energy Magazine - January/February 2016 - 24
IEEE Power & Energy Magazine - January/February 2016 - 25
IEEE Power & Energy Magazine - January/February 2016 - 26
IEEE Power & Energy Magazine - January/February 2016 - 27
IEEE Power & Energy Magazine - January/February 2016 - 28
IEEE Power & Energy Magazine - January/February 2016 - 29
IEEE Power & Energy Magazine - January/February 2016 - 30
IEEE Power & Energy Magazine - January/February 2016 - 31
IEEE Power & Energy Magazine - January/February 2016 - 32
IEEE Power & Energy Magazine - January/February 2016 - 33
IEEE Power & Energy Magazine - January/February 2016 - 34
IEEE Power & Energy Magazine - January/February 2016 - 35
IEEE Power & Energy Magazine - January/February 2016 - 36
IEEE Power & Energy Magazine - January/February 2016 - 37
IEEE Power & Energy Magazine - January/February 2016 - 38
IEEE Power & Energy Magazine - January/February 2016 - 39
IEEE Power & Energy Magazine - January/February 2016 - 40
IEEE Power & Energy Magazine - January/February 2016 - 41
IEEE Power & Energy Magazine - January/February 2016 - 42
IEEE Power & Energy Magazine - January/February 2016 - 43
IEEE Power & Energy Magazine - January/February 2016 - 44
IEEE Power & Energy Magazine - January/February 2016 - 45
IEEE Power & Energy Magazine - January/February 2016 - 46
IEEE Power & Energy Magazine - January/February 2016 - 47
IEEE Power & Energy Magazine - January/February 2016 - 48
IEEE Power & Energy Magazine - January/February 2016 - 49
IEEE Power & Energy Magazine - January/February 2016 - 50
IEEE Power & Energy Magazine - January/February 2016 - 51
IEEE Power & Energy Magazine - January/February 2016 - 52
IEEE Power & Energy Magazine - January/February 2016 - 53
IEEE Power & Energy Magazine - January/February 2016 - 54
IEEE Power & Energy Magazine - January/February 2016 - 55
IEEE Power & Energy Magazine - January/February 2016 - 56
IEEE Power & Energy Magazine - January/February 2016 - 57
IEEE Power & Energy Magazine - January/February 2016 - 58
IEEE Power & Energy Magazine - January/February 2016 - 59
IEEE Power & Energy Magazine - January/February 2016 - 60
IEEE Power & Energy Magazine - January/February 2016 - 61
IEEE Power & Energy Magazine - January/February 2016 - 62
IEEE Power & Energy Magazine - January/February 2016 - 63
IEEE Power & Energy Magazine - January/February 2016 - 64
IEEE Power & Energy Magazine - January/February 2016 - 65
IEEE Power & Energy Magazine - January/February 2016 - 66
IEEE Power & Energy Magazine - January/February 2016 - 67
IEEE Power & Energy Magazine - January/February 2016 - 68
IEEE Power & Energy Magazine - January/February 2016 - 69
IEEE Power & Energy Magazine - January/February 2016 - 70
IEEE Power & Energy Magazine - January/February 2016 - 71
IEEE Power & Energy Magazine - January/February 2016 - 72
IEEE Power & Energy Magazine - January/February 2016 - 73
IEEE Power & Energy Magazine - January/February 2016 - 74
IEEE Power & Energy Magazine - January/February 2016 - 75
IEEE Power & Energy Magazine - January/February 2016 - 76
IEEE Power & Energy Magazine - January/February 2016 - 77
IEEE Power & Energy Magazine - January/February 2016 - 78
IEEE Power & Energy Magazine - January/February 2016 - 79
IEEE Power & Energy Magazine - January/February 2016 - 80
IEEE Power & Energy Magazine - January/February 2016 - 81
IEEE Power & Energy Magazine - January/February 2016 - 82
IEEE Power & Energy Magazine - January/February 2016 - 83
IEEE Power & Energy Magazine - January/February 2016 - 84
IEEE Power & Energy Magazine - January/February 2016 - 85
IEEE Power & Energy Magazine - January/February 2016 - 86
IEEE Power & Energy Magazine - January/February 2016 - 87
IEEE Power & Energy Magazine - January/February 2016 - 88
IEEE Power & Energy Magazine - January/February 2016 - 89
IEEE Power & Energy Magazine - January/February 2016 - 90
IEEE Power & Energy Magazine - January/February 2016 - 91
IEEE Power & Energy Magazine - January/February 2016 - 92
IEEE Power & Energy Magazine - January/February 2016 - 93
IEEE Power & Energy Magazine - January/February 2016 - 94
IEEE Power & Energy Magazine - January/February 2016 - 95
IEEE Power & Energy Magazine - January/February 2016 - 96
IEEE Power & Energy Magazine - January/February 2016 - 97
IEEE Power & Energy Magazine - January/February 2016 - 98
IEEE Power & Energy Magazine - January/February 2016 - 99
IEEE Power & Energy Magazine - January/February 2016 - 100
IEEE Power & Energy Magazine - January/February 2016 - 101
IEEE Power & Energy Magazine - January/February 2016 - 102
IEEE Power & Energy Magazine - January/February 2016 - 103
IEEE Power & Energy Magazine - January/February 2016 - 104
IEEE Power & Energy Magazine - January/February 2016 - 105
IEEE Power & Energy Magazine - January/February 2016 - 106
IEEE Power & Energy Magazine - January/February 2016 - 107
IEEE Power & Energy Magazine - January/February 2016 - 108
IEEE Power & Energy Magazine - January/February 2016 - 109
IEEE Power & Energy Magazine - January/February 2016 - 110
IEEE Power & Energy Magazine - January/February 2016 - 111
IEEE Power & Energy Magazine - January/February 2016 - 112
IEEE Power & Energy Magazine - January/February 2016 - 113
IEEE Power & Energy Magazine - January/February 2016 - 114
IEEE Power & Energy Magazine - January/February 2016 - 115
IEEE Power & Energy Magazine - January/February 2016 - 116
IEEE Power & Energy Magazine - January/February 2016 - 117
IEEE Power & Energy Magazine - January/February 2016 - 118
IEEE Power & Energy Magazine - January/February 2016 - 119
IEEE Power & Energy Magazine - January/February 2016 - 120
IEEE Power & Energy Magazine - January/February 2016 - 121
IEEE Power & Energy Magazine - January/February 2016 - 122
IEEE Power & Energy Magazine - January/February 2016 - 123
IEEE Power & Energy Magazine - January/February 2016 - 124
IEEE Power & Energy Magazine - January/February 2016 - 125
IEEE Power & Energy Magazine - January/February 2016 - 126
IEEE Power & Energy Magazine - January/February 2016 - 127
IEEE Power & Energy Magazine - January/February 2016 - 128
IEEE Power & Energy Magazine - January/February 2016 - Cover3
IEEE Power & Energy Magazine - January/February 2016 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com