IEEE Power & Energy Magazine - March/April 2015 - 39

SmartEST: Advanced DER
Communication Testing

march/april 2015

Measured Q

200

Commanded Q

100
0
-100
430

440

450 460 470 480
RMS Line-Line Voltage

490

figure 11. Measured reactive power during a high-power
volt/var test, plotted against the commanded volt/var characteristic (source: NREL).

the laboratory setup, which is necessary to emulate real-world
scenarios. The inverter tested was equipped with the standard
firmware as provided by the manufacturer, without any modifications or changes.
To validate the remote-control and communication possibilities of the PV inverters (together with the gateway controller) in accordance with IEC 61850-90-7, several functions
were tested. In what follows, the results for two of them are
presented: first, the adjustment of the maximum power generation level (i.e., INV2) and second, the adjustment of the power
factor (INV3). Both functions can be remotely accessed, and
new set points can be sent via the distribution management

MV/LV
20/0.4 kV
1 MVA
RLC
Load 1

RLC
Load 2

Line Emulation 1
LV Bus 1
Adjustable
Transformer

Ethernet

DMS SCADA
System

PV
Inverter

Modbus

1
IEC 61850
Gateway

PV Array
Simulator

The accurate functioning of communication and remote-control features implemented in inverter-based
DERs is a key requirement to ensure
interoperability in a smart grid environment. The main aspects addressed
during validation testing are communication interfaces, the corresponding advanced DER functions, and the
response of the power converters.
For this purpose, a variety of test
cases were implemented at SmartEST and applied for validation of
an IEC 61850 gateway controller
that was developed at AIT, together
with a utility-scale 680-kVA inverter.
FigureĀ 12 shows the test setup. The
inverter was connected to one of
the LV test buses so as to allow the
emulation of a "weak" grid connection through additional line impedances and local loads. The dc side
of the inverter was supplied by a
programmable PV array simulator
emulating the I-V curve characteristics of the PV system. Steady-state
and dynamically changing irradiance
conditions can both be configured in

Volt-Var Characteristic

kVAR

voltage and frequency test profiles needed to test advanced
grid support functions such as frequency/watt control and
volt/var control. In addition, testing at NREL provides
added confidence to DER owners and utilities that advanced
features will perform as desired in the field. For these reasons, significant testing at ESIF focused on developing and
validating the advanced grid support features common in
today's inverters.
Figure 10 shows measured reactive power output (Q) from
a 500-kVA commercial inverter during a test of its volt/var control capability. The voltage test profile, shown in Figure 10(a),
is from the volt/var test described in the Sandia National Laboratories technical report Test Protocols for Advanced Inverter
Interoperability Functions. The voltage profile contains both
voltage steps, which test the inverter's dynamic response in
volt/var mode, and voltage ramps, which characterize the
quasi-steady-state volt/var characteristic. These plots demonstrate that the inverter's dynamic response is well tuned and
its quasi-steady-state response closely follows the programed
volt/var characteristic, as shown in Figure 11.
Testing at ESIF also goes well beyond the simple
advanced inverter test described here to include system-level
testing, microgrid testing and development, and other smart
grid-related experiments.

+
-

figure 12. The laboratory test setup used for validation of an IEC 61850 gateway
(source: AIT).
ieee power & energy magazine

39



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - March/April 2015

IEEE Power & Energy Magazine - March/April 2015 - Cover1
IEEE Power & Energy Magazine - March/April 2015 - Cover2
IEEE Power & Energy Magazine - March/April 2015 - 1
IEEE Power & Energy Magazine - March/April 2015 - 2
IEEE Power & Energy Magazine - March/April 2015 - 3
IEEE Power & Energy Magazine - March/April 2015 - 4
IEEE Power & Energy Magazine - March/April 2015 - 5
IEEE Power & Energy Magazine - March/April 2015 - 6
IEEE Power & Energy Magazine - March/April 2015 - 7
IEEE Power & Energy Magazine - March/April 2015 - 8
IEEE Power & Energy Magazine - March/April 2015 - 9
IEEE Power & Energy Magazine - March/April 2015 - 10
IEEE Power & Energy Magazine - March/April 2015 - 11
IEEE Power & Energy Magazine - March/April 2015 - 12
IEEE Power & Energy Magazine - March/April 2015 - 13
IEEE Power & Energy Magazine - March/April 2015 - 14
IEEE Power & Energy Magazine - March/April 2015 - 15
IEEE Power & Energy Magazine - March/April 2015 - 16
IEEE Power & Energy Magazine - March/April 2015 - 17
IEEE Power & Energy Magazine - March/April 2015 - 18
IEEE Power & Energy Magazine - March/April 2015 - 19
IEEE Power & Energy Magazine - March/April 2015 - 20
IEEE Power & Energy Magazine - March/April 2015 - 21
IEEE Power & Energy Magazine - March/April 2015 - 22
IEEE Power & Energy Magazine - March/April 2015 - 23
IEEE Power & Energy Magazine - March/April 2015 - 24
IEEE Power & Energy Magazine - March/April 2015 - 25
IEEE Power & Energy Magazine - March/April 2015 - 26
IEEE Power & Energy Magazine - March/April 2015 - 27
IEEE Power & Energy Magazine - March/April 2015 - 28
IEEE Power & Energy Magazine - March/April 2015 - 29
IEEE Power & Energy Magazine - March/April 2015 - 30
IEEE Power & Energy Magazine - March/April 2015 - 31
IEEE Power & Energy Magazine - March/April 2015 - 32
IEEE Power & Energy Magazine - March/April 2015 - 33
IEEE Power & Energy Magazine - March/April 2015 - 34
IEEE Power & Energy Magazine - March/April 2015 - 35
IEEE Power & Energy Magazine - March/April 2015 - 36
IEEE Power & Energy Magazine - March/April 2015 - 37
IEEE Power & Energy Magazine - March/April 2015 - 38
IEEE Power & Energy Magazine - March/April 2015 - 39
IEEE Power & Energy Magazine - March/April 2015 - 40
IEEE Power & Energy Magazine - March/April 2015 - 41
IEEE Power & Energy Magazine - March/April 2015 - 42
IEEE Power & Energy Magazine - March/April 2015 - 43
IEEE Power & Energy Magazine - March/April 2015 - 44
IEEE Power & Energy Magazine - March/April 2015 - 45
IEEE Power & Energy Magazine - March/April 2015 - 46
IEEE Power & Energy Magazine - March/April 2015 - 47
IEEE Power & Energy Magazine - March/April 2015 - 48
IEEE Power & Energy Magazine - March/April 2015 - 49
IEEE Power & Energy Magazine - March/April 2015 - 50
IEEE Power & Energy Magazine - March/April 2015 - 51
IEEE Power & Energy Magazine - March/April 2015 - 52
IEEE Power & Energy Magazine - March/April 2015 - 53
IEEE Power & Energy Magazine - March/April 2015 - 54
IEEE Power & Energy Magazine - March/April 2015 - 55
IEEE Power & Energy Magazine - March/April 2015 - 56
IEEE Power & Energy Magazine - March/April 2015 - 57
IEEE Power & Energy Magazine - March/April 2015 - 58
IEEE Power & Energy Magazine - March/April 2015 - 59
IEEE Power & Energy Magazine - March/April 2015 - 60
IEEE Power & Energy Magazine - March/April 2015 - 61
IEEE Power & Energy Magazine - March/April 2015 - 62
IEEE Power & Energy Magazine - March/April 2015 - 63
IEEE Power & Energy Magazine - March/April 2015 - 64
IEEE Power & Energy Magazine - March/April 2015 - 65
IEEE Power & Energy Magazine - March/April 2015 - 66
IEEE Power & Energy Magazine - March/April 2015 - 67
IEEE Power & Energy Magazine - March/April 2015 - 68
IEEE Power & Energy Magazine - March/April 2015 - 69
IEEE Power & Energy Magazine - March/April 2015 - 70
IEEE Power & Energy Magazine - March/April 2015 - 71
IEEE Power & Energy Magazine - March/April 2015 - 72
IEEE Power & Energy Magazine - March/April 2015 - 73
IEEE Power & Energy Magazine - March/April 2015 - 74
IEEE Power & Energy Magazine - March/April 2015 - 75
IEEE Power & Energy Magazine - March/April 2015 - 76
IEEE Power & Energy Magazine - March/April 2015 - 77
IEEE Power & Energy Magazine - March/April 2015 - 78
IEEE Power & Energy Magazine - March/April 2015 - 79
IEEE Power & Energy Magazine - March/April 2015 - 80
IEEE Power & Energy Magazine - March/April 2015 - 81
IEEE Power & Energy Magazine - March/April 2015 - 82
IEEE Power & Energy Magazine - March/April 2015 - 83
IEEE Power & Energy Magazine - March/April 2015 - 84
IEEE Power & Energy Magazine - March/April 2015 - 85
IEEE Power & Energy Magazine - March/April 2015 - 86
IEEE Power & Energy Magazine - March/April 2015 - 87
IEEE Power & Energy Magazine - March/April 2015 - 88
IEEE Power & Energy Magazine - March/April 2015 - 89
IEEE Power & Energy Magazine - March/April 2015 - 90
IEEE Power & Energy Magazine - March/April 2015 - 91
IEEE Power & Energy Magazine - March/April 2015 - 92
IEEE Power & Energy Magazine - March/April 2015 - 93
IEEE Power & Energy Magazine - March/April 2015 - 94
IEEE Power & Energy Magazine - March/April 2015 - 95
IEEE Power & Energy Magazine - March/April 2015 - 96
IEEE Power & Energy Magazine - March/April 2015 - Cover3
IEEE Power & Energy Magazine - March/April 2015 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com