IEEE Power & Energy Magazine - March/April 2017 - 47

network protector, which is designed to quickly disconnect in
the event of an upstream fault and prevent reverse power flows
via the secondary network. Because of this design, both types
of networks create challenges for any DER system that exceeds
customer demand and, thus, may provide reverse power flow
back to the grid.
IEEE 1547.6 is the standard recommended practice for
interconnecting DER systems with spot and area networks,
and the standard offers guidance for safe interconnection
and maintaining reliability. Con Edison has approached the
interconnection challenge by modifying network protector
relay settings to allow relatively small amounts of reverse
power flow, while still tripping offline when there is a fault
on the network. This type of architecture evolution has
helped Con Edison facilitate growing amounts of DER and
move toward the goals of New York State's REV as well as the
state renewable portfolio standards goals.

Example Spot Network
Distribution System

Feeder 3

Feeder 2

Feeder 1

Utility Substation
To Other Network
Transformers

Legend

M
Customer

M

Three-Phase
Network Transformer
Network Protector
Primary Feeder
Utility Meter
Secondary Bus
Fuse
Breaker
Substation
Breaker

figure S3. An example of a spot network secondary
network distribution system. (Image courtesy of NREL.)

different solutions, or layers of multiple solutions, affect
the reliability and cost while also incorporating the necessary engineering precision. Although this is no replacement for the engineering analysis needed for deployment,
it does allow the utility staff to focus on the core of the IRP
process-determining the most durable and cost-effective
solution-with a high level of confidence. Developing this
tool offers significant opportunity to grow and transform
the way the electric utility industry addresses these issues.
march/april 2017

Planning the Electric Distribution
System into the Future
Traditional EDP leverages a load-forecast approach to
accurately predict increasing electricity power demand
and then guide the design of distribution feeders and line
extensions to serve those new loads. EDP engineers work
closely with substation and transmission planners to provide sufficient capacity to serve new loads both on the substation and the transmission system. However, the "wires
solutions" of building new utility infrastructure are no
longer the only game in town, and utilities like Con Edison are being asked to consider myriad nonwires solutions
that effectively reduce system peak demand and potentially
offset expensive distribution, substation, and transmission
system expansions.
Traditional distribution planning approaches bring reliability and, at least, an N-1 contingency factor for reliable
system operation. Yet these nonwires and other innovative
solutions do not fit customary EDP approaches. Relying on
"behind-the-meter" solutions, as well as utility-sited solutions, to help manage peak demand may convey a level of
risk to utilities, as they will have limited control over customer-sited solutions. However, it is crucial that utilities rely
on their customers and energy partners to maintain their service reliability levels moving into the future. If successful,
the BQDM program will invigorate utility and regulatory
discussions about how to plan effectively for future load and
DER growth, and it will likely change some methodologies
that utilities and regulators consider going forward.

For Further Reading
S. P. De Martini and L. Wang. (2016). Data and the electricity grid: A roadmap for using system data to build a plug
and play grid [Online]. Available: http://morethansmart.org/
wp-content/uploads/2016/10/MTS-System-Data-Paper.pdf
T. Lindl, K. Fox, A. Ellis, and R. Broderick. (2013. May).
Integrated distribution planning concept paper [Online].
Available: http://www.irecusa.org/publications/integrateddistribution-planning-concept-paper/
P. De Martini. (2016. Aug.). Integrated distribution planning. ICF International. [Online]. Available: http://energy.
gov/sites/prod/files/2016/09/f33/DOE%20MPUC%20Integrated%20Distribution%20Planning%208312016.pdf
DOE Grid Modernization Laboratory Consortium [Online]. Available: http://energy.gov/under-secretary-scienceand-energy/doe-grid-modernization-laboratory-consortiumgmlc-awards

Biographies
Michael Coddington is with the National Renewable Energy Laboratory, Golden, Colorado.
Damian Sciano is with Con Edison, New York.
Jason Fuller is with the Pacific Northwest National Laboratory, Richland, Washington.
p&e

ieee power & energy magazine

47


http://www.morethansmart.org/ http://www.irecusa.org/publications/integrated http://energy http://www.energy.gov/under-secretary-science

Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - March/April 2017

IEEE Power & Energy Magazine - March/April 2017 - Cover1
IEEE Power & Energy Magazine - March/April 2017 - Cover2
IEEE Power & Energy Magazine - March/April 2017 - 1
IEEE Power & Energy Magazine - March/April 2017 - 2
IEEE Power & Energy Magazine - March/April 2017 - 3
IEEE Power & Energy Magazine - March/April 2017 - 4
IEEE Power & Energy Magazine - March/April 2017 - 5
IEEE Power & Energy Magazine - March/April 2017 - 6
IEEE Power & Energy Magazine - March/April 2017 - 7
IEEE Power & Energy Magazine - March/April 2017 - 8
IEEE Power & Energy Magazine - March/April 2017 - 9
IEEE Power & Energy Magazine - March/April 2017 - 10
IEEE Power & Energy Magazine - March/April 2017 - 11
IEEE Power & Energy Magazine - March/April 2017 - 12
IEEE Power & Energy Magazine - March/April 2017 - 13
IEEE Power & Energy Magazine - March/April 2017 - 14
IEEE Power & Energy Magazine - March/April 2017 - 15
IEEE Power & Energy Magazine - March/April 2017 - 16
IEEE Power & Energy Magazine - March/April 2017 - 17
IEEE Power & Energy Magazine - March/April 2017 - 18
IEEE Power & Energy Magazine - March/April 2017 - 19
IEEE Power & Energy Magazine - March/April 2017 - 20
IEEE Power & Energy Magazine - March/April 2017 - 21
IEEE Power & Energy Magazine - March/April 2017 - 22
IEEE Power & Energy Magazine - March/April 2017 - 23
IEEE Power & Energy Magazine - March/April 2017 - 24
IEEE Power & Energy Magazine - March/April 2017 - 25
IEEE Power & Energy Magazine - March/April 2017 - 26
IEEE Power & Energy Magazine - March/April 2017 - 27
IEEE Power & Energy Magazine - March/April 2017 - 28
IEEE Power & Energy Magazine - March/April 2017 - 29
IEEE Power & Energy Magazine - March/April 2017 - 30
IEEE Power & Energy Magazine - March/April 2017 - 31
IEEE Power & Energy Magazine - March/April 2017 - 32
IEEE Power & Energy Magazine - March/April 2017 - 33
IEEE Power & Energy Magazine - March/April 2017 - 34
IEEE Power & Energy Magazine - March/April 2017 - 35
IEEE Power & Energy Magazine - March/April 2017 - 36
IEEE Power & Energy Magazine - March/April 2017 - 37
IEEE Power & Energy Magazine - March/April 2017 - 38
IEEE Power & Energy Magazine - March/April 2017 - 39
IEEE Power & Energy Magazine - March/April 2017 - 40
IEEE Power & Energy Magazine - March/April 2017 - 41
IEEE Power & Energy Magazine - March/April 2017 - 42
IEEE Power & Energy Magazine - March/April 2017 - 43
IEEE Power & Energy Magazine - March/April 2017 - 44
IEEE Power & Energy Magazine - March/April 2017 - 45
IEEE Power & Energy Magazine - March/April 2017 - 46
IEEE Power & Energy Magazine - March/April 2017 - 47
IEEE Power & Energy Magazine - March/April 2017 - 48
IEEE Power & Energy Magazine - March/April 2017 - 49
IEEE Power & Energy Magazine - March/April 2017 - 50
IEEE Power & Energy Magazine - March/April 2017 - 51
IEEE Power & Energy Magazine - March/April 2017 - 52
IEEE Power & Energy Magazine - March/April 2017 - 53
IEEE Power & Energy Magazine - March/April 2017 - 54
IEEE Power & Energy Magazine - March/April 2017 - 55
IEEE Power & Energy Magazine - March/April 2017 - 56
IEEE Power & Energy Magazine - March/April 2017 - 57
IEEE Power & Energy Magazine - March/April 2017 - 58
IEEE Power & Energy Magazine - March/April 2017 - 59
IEEE Power & Energy Magazine - March/April 2017 - 60
IEEE Power & Energy Magazine - March/April 2017 - 61
IEEE Power & Energy Magazine - March/April 2017 - 62
IEEE Power & Energy Magazine - March/April 2017 - 63
IEEE Power & Energy Magazine - March/April 2017 - 64
IEEE Power & Energy Magazine - March/April 2017 - 65
IEEE Power & Energy Magazine - March/April 2017 - 66
IEEE Power & Energy Magazine - March/April 2017 - 67
IEEE Power & Energy Magazine - March/April 2017 - 68
IEEE Power & Energy Magazine - March/April 2017 - 69
IEEE Power & Energy Magazine - March/April 2017 - 70
IEEE Power & Energy Magazine - March/April 2017 - 71
IEEE Power & Energy Magazine - March/April 2017 - 72
IEEE Power & Energy Magazine - March/April 2017 - 73
IEEE Power & Energy Magazine - March/April 2017 - 74
IEEE Power & Energy Magazine - March/April 2017 - 75
IEEE Power & Energy Magazine - March/April 2017 - 76
IEEE Power & Energy Magazine - March/April 2017 - 77
IEEE Power & Energy Magazine - March/April 2017 - 78
IEEE Power & Energy Magazine - March/April 2017 - 79
IEEE Power & Energy Magazine - March/April 2017 - 80
IEEE Power & Energy Magazine - March/April 2017 - 81
IEEE Power & Energy Magazine - March/April 2017 - 82
IEEE Power & Energy Magazine - March/April 2017 - 83
IEEE Power & Energy Magazine - March/April 2017 - 84
IEEE Power & Energy Magazine - March/April 2017 - 85
IEEE Power & Energy Magazine - March/April 2017 - 86
IEEE Power & Energy Magazine - March/April 2017 - 87
IEEE Power & Energy Magazine - March/April 2017 - 88
IEEE Power & Energy Magazine - March/April 2017 - 89
IEEE Power & Energy Magazine - March/April 2017 - 90
IEEE Power & Energy Magazine - March/April 2017 - 91
IEEE Power & Energy Magazine - March/April 2017 - 92
IEEE Power & Energy Magazine - March/April 2017 - 93
IEEE Power & Energy Magazine - March/April 2017 - 94
IEEE Power & Energy Magazine - March/April 2017 - 95
IEEE Power & Energy Magazine - March/April 2017 - 96
IEEE Power & Energy Magazine - March/April 2017 - Cover3
IEEE Power & Energy Magazine - March/April 2017 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com